Abstract 238: Role of GSK3β in modulating TRAIL-induced apoptosis in prostate cancer cells

Author(s):  
Nithyananda Thorenoor ◽  
Ramesh Thylur ◽  
Ajay Rana ◽  
Basabi Rana
Endocrinology ◽  
2000 ◽  
Vol 141 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Sarah E. Blutt ◽  
Timothy J. McDonnell ◽  
Tara C. Polek ◽  
Nancy L. Weigel

Abstract While the role of vitamin D in bone and mineral metabolism has been investigated extensively, the role of the vitamin D receptor in other tissues is less well understood. 1,25-dihydroxyvitamin D3 (calcitriol) can act as a differentiating agent in normal tissues and can inhibit the growth of many cancer cell lines including LNCaP prostate cancer cells. We have shown previously that calcitriol causes LNCaP cell accumulation in the G0/G1 phase of the cell cycle. In this study, we demonstrate that calcitriol also induces apoptosis of LNCaP cells. The calcitriol-induced apoptosis is accompanied by a down-regulation of Bcl-2 and Bcl-XL proteins, both of which protect cells from undergoing apoptosis. Other proteins important in apoptotic control, Bax, Mcl-1, and Bcl-Xs, are unaffected by calcitriol treatment. We find that overexpression of Bcl-2 blocks calcitriol-induced apoptosis and reduces, but does not eliminate, calcitriol-induced growth inhibition. We conclude that both regulation of cell cycle and the apoptotic pathway are involved in calcitriol action in prostate cancer cells.


2008 ◽  
Vol 75 (12) ◽  
pp. 2345-2355 ◽  
Author(s):  
Dae-Hee Lee ◽  
Miroslaw Szczepanski ◽  
Yong J. Lee

Toxicology ◽  
2008 ◽  
Vol 250 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Hong-Chiang Chang ◽  
Chorng-Chih Huang ◽  
Chun-Jen Huang ◽  
Jin-Shiung Cheng ◽  
Shiuh-In Liu ◽  
...  

Author(s):  
Hien Thi Thu Le ◽  
Akshaya Murugesan ◽  
Nuno R Candeias ◽  
Olli Yli-Harja ◽  
Meenakshisundaram Kandhavelu

Background: (1-(2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile (HIC), an agonist of the P2Y1 receptor (P2Y1R), induces cell death in prostate cancer cells. However, the molecular mechanism behind the inhibition of HIC in prostate cancer remains elusive. Methods and results: Here, to outline the inhibitory role of HIC on prostate cancer cells, PC-3 and DU145 cell lines were treated with the respective IC50 concentrations, which reduced cell proliferation, adherence properties and spheroid formation. HIC was able to arrest the cell cycle at G1/S phase and also induced apoptosis and DNA damage, validated by gene expression profiling. HIC inhibited the prostate cancer cells’ migration and invasion, revealing its antimetastatic ability. P2Y1R-targeted HIC affects p53, MAPK and NF-κB protein expression, thereby improving the p53 stabilization essential for G1/S arrest and cell death. Conclusion: These findings provide an insight on the potential use of HIC, which remains the mainstay treatment for prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document