Abstract 3719: Mechanisms of resistance to the second-generation alk inhibitor ap26113 in human npm-alk-positive anaplastic large cell lymphoma cells

Author(s):  
Monica Ceccon ◽  
Luca Mologni ◽  
Giovanni Giudici ◽  
Rocco Piazza ◽  
Alessandra Pirola ◽  
...  
2020 ◽  
Vol 10 ◽  
Author(s):  
Dennis Christoph Harrer ◽  
Karin Menhart ◽  
Stephanie Mayer ◽  
Wolfgang Herr ◽  
Albrecht Reichle ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2847-2847
Author(s):  
Saskia AGM Cillessen ◽  
Nathalie J Hijmering ◽  
Laura M Moesbergen ◽  
Gert J. Ossenkoppele ◽  
Joost J Oudejans ◽  
...  

Abstract Abstract 2847 Anaplastic large cell lymphoma (ALCL) is a CD30 positive T-cell lymphoma that can be divided into a systemic and a primary cutaneous type. Systemic ALCL can be further divided into an anaplastic lymphoma kinase (ALK) expressing type and an ALK-negative type. Despite intensive treatment regimens, the disease will be fatal in 20–30% of the systemic ALK-positive and 50–70% of the systemic ALK-negative ALCL patients. A recent study in primary ALCL samples has demonstrated an increased expression of a fraction of NF-κB target genes, suggesting upregulation of NF-κB activity in ALCL tumor cells. NF-κB activity can be inhibited by the proteasome inhibitor bortezomib resulting in induction of apoptosis. In this study, we therefore investigated if bortezomib can induce apoptosis of cultured lymphoma cells of three systemic ALK-positive and three ALK-negative ALCL patients and seven ALCL cell lines and we examined the mechanisms by which bortezomib induced cytotoxicity in these ALCL cells. Treatment with bortezomib resulted in induction of apoptosis in all ALK-positive and ALK-negative ALCL patient samples and ALCL cell lines tested, when we compared the percentage cell death with the non-neoplastic CD4- and CD8-positive PBMC and tonsil T-cells from healthy donors. The lethal dose (LD50) varied between 54nM and more than 100nM after 24 hours and varied between 21nM and 52nM after 48 hours of exposure. ALK-negative ALCL cases were more sensitive to bortezomib and showed significant lower LD50 values than ALK-positive ALCL cells. We show that bortezomib-induced cell death in ALK-positive and ALK-negative ALCL is dependent on caspase-9 and/or caspase-8 mediated apoptosis and that bortezomib induces depolarization of the mitochondrial membrane. mRNA-expression and protein analysis revealed clearly upregulation of the BH3-only proteins Noxa, Bik and Puma, resulting in Bak and Bax release from the anti-apoptotic proteins Mcl-1 and Bcl-2. We also demonstrated that ALCL cells relatively resistant to bortezomib were characterized by high expression of Bcl-2A1, suggesting the possibility of pre-defining patients most likely to benefit from bortezomib therapy. Our preclinical data support the therapeutic application of bortezomib as potential drug in the treatment of ALCL, especially ALK-negative ALCL patients to improve their prognosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Author(s):  
Nina Prokoph ◽  
Nicola Anna Probst ◽  
Liam Changwoo Lee ◽  
Jack Michael Monahan ◽  
Jamie David Matthews ◽  
...  

Anaplastic Large Cell Lymphoma (ALCL) is a T-cell malignancy predominantly driven by a hyperactive Anaplastic Lymphoma Kinase (ALK) fusion protein. ALK inhibitors such as crizotinib provide alternatives to standard chemotherapy with reduced toxicity and side effects. Children with lymphomas driven by NPM1-ALK fusion proteins achieved an objective response rate to ALK inhibition therapy of 54-90% in clinical trials. However, a subset of patients progress within the first 3 months of treatment. The mechanism for the development of ALK inhibitor resistance is unknown. Through genome-wide CRISPR activation and knockout screens in ALCL cell lines combined with RNA-seq data derived from ALK inhibitor relapsed patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven by aberrant upregulation of IL10RA. Elevated IL10RA expression rewires the STAT3 signaling pathway bypassing otherwise critical phosphorylation by NPM1-ALK. IL10RA expression does not correlate with response to standard chemotherapy in pediatric patients suggesting that combination of crizotinib with chemotherapy could prevent ALK-inhibitor resistance-specific relapse. Trials registered as NCT01979536/NCT02034981/UMIN000028075.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 253
Author(s):  
Federica Lovisa ◽  
Anna Garbin ◽  
Sara Crotti ◽  
Piero Di Battista ◽  
Ilaria Gallingani ◽  
...  

Over the past 15 years, several biological and pathological characteristics proved their significance in pediatric anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphoma (ALCL) prognostic stratification. However, the identification of new non-invasive disease biomarkers, relying on the most important disease mechanisms, is still necessary. In recent years, plasmatic circulating small extracellular vesicles (S-EVs) gathered great importance both as stable biomarker carriers and active players in tumorigenesis. In the present work, we performed a comprehensive study on the proteomic composition of plasmatic S-EVs of pediatric ALCL patients compared to healthy donors (HDs). By using a mass spectrometry-based proteomics approach, we identified 50 proteins significantly overrepresented in S-EVs of ALCL patients. Gene Ontology enrichment analysis disclosed cellular components and molecular functions connected with S-EV origin and vesicular trafficking, whereas cell adhesion, glycosaminoglycan metabolic process, extracellular matrix organization, collagen fibril organization and acute phase response were the most enriched biological processes. Of importance, consistently with the presence of nucleophosmin (NPM)-ALK fusion protein in ALCL cells, a topological enrichment analysis based on Reactome- and Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived networks highlighted a dramatic increase in proteins of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in ALCL S-EVs, which included heat shock protein 90-kDa isoform alpha 1 (HSP90AA1), osteopontin (SPP1/OPN) and tenascin C (TNC). These results were validated by Western blotting analysis on a panel of ALCL and HD cases. Further research is warranted to better define the role of these S-EV proteins as diagnostic and, possibly, prognostic parameters at diagnosis and for ALCL disease monitoring.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 181
Author(s):  
Chuquan Shang ◽  
Bardes Hassan ◽  
Moinul Haque ◽  
Yuqi Song ◽  
Jing Li ◽  
...  

Previously it was shown that autophagy contributes to crizotinib resistance in ALK-positive anaplastic large cell lymphoma (ALK + ALCL). We asked if autophagy is equally important in two distinct subsets of ALK + ALCL, namely Reporter Unresponsive (RU) and Reporter Responsive (RR), of which RR cells display stem-like properties. Autophagic flux was assessed with a fluorescence tagged LC3 reporter and immunoblots to detect endogenous LC3 alongside chloroquine, an autophagy inhibitor. The stem-like RR cells displayed significantly higher autophagic response upon crizotinib treatment. Their exaggerated autophagic response is cytoprotective against crizotinib, as inhibition of autophagy using chloroquine or shRNA against BECN1 or ATG7 led to a decrease in their viability. In contrast, autophagy inhibition in RU resulted in minimal changes. Since the differential protein expression of MYC is a regulator of the RU/RR dichotomy and is higher in RR cells, we asked if MYC regulates the autophagy-mediated cytoprotective effect. Inhibition of MYC in RR cells using shRNA significantly blunted crizotinib-induced autophagic response and effectively suppressed this cytoprotective effect. In conclusion, stem-like RR cells respond with rapid and intense autophagic flux which manifests with crizotinib resistance. For the first time, we have highlighted the direct role of MYC in regulating autophagy and its associated chemoresistance phenotype in ALK + ALCL stem-like cells.


Sign in / Sign up

Export Citation Format

Share Document