Abstract LB-288: Optimized xylene-free protein extraction method from formalin-fixed paraffin-embedded tissue sections for western blot analysis

Author(s):  
Anthony Mansour ◽  
Noha Bejjani ◽  
Carole Dagher ◽  
Rajaa Chatila ◽  
Wissam H. Faour
1998 ◽  
Vol 46 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Kimimasa Ikeda ◽  
Takushi Monden ◽  
Toshiyuki Kanoh ◽  
Masaki Tsujie ◽  
Hikaru Izawa ◽  
...  

We describe and discuss a method of protein extraction for Western blot analysis from formalin-fixed, paraffin-embedded tissue sections. From 5-mm2 50-μm-thick tissue sections, an abundance of proteins could be extracted by incubating the sections in lysis buffer containing 2% sodium dodecyl sulfate (SDS) at 100C for 20 min followed by incubation at 60C for 2 hr. Extracts yielded discernible protein bands ranging from 10 kD to 120 kD as identified by SDS-polyacrylamide gel electrophoresis (PAGE). Western blot analysis successfully detected membrane-bound protein such as E-cadherin, cytosolic protein such as β-catenin, and nuclear proteins including proliferating cell nuclear antigen (PCNA), mutant-type p53, cyclin D1, cyclin E, and cyclin-dependent kinases (CDKs). With this technique, we could examine cyclin D1 and CDK2 expression in small adenomas compared with cancer tissues and normal mucosa. The simple method of protein extraction described here should make it possible to use large-scale archives of formalin-fixed, paraffin-embedded samples for Western blot analysis, and its application could lead to detailed analysis of protein expression. This new technique should yield valuable information for molecular biology.


2012 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Keiichi Hatakeyama ◽  
Kanako Wakabayashi-Nakao ◽  
Yutaka Aoki ◽  
Shun-ichiro Ogura ◽  
Ken Yamaguchi ◽  
...  

2016 ◽  
Vol 54 (11) ◽  
pp. 2798-2803 ◽  
Author(s):  
Elham Salehi ◽  
Mohammad T. Hedayati ◽  
Jan Zoll ◽  
Haleh Rafati ◽  
Maryam Ghasemi ◽  
...  

In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus , Fusarium , Scedosporium , and the Mucormycetes . The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus , Aspergillus flavus , Aspergillus terreus , Aspergillus niger , Fusarium oxysporum , Fusarium solani , Scedosporium apiospermum , Rhizopus oryzae , Rhizopus microsporus , Mucor spp., and Syncephalastrum . Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus , S. apiospermum , and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus . Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.


1996 ◽  
Vol 44 (11) ◽  
pp. 1251-1259 ◽  
Author(s):  
J R Reeves ◽  
J J Going ◽  
G Smith ◽  
T G Cooke ◽  
B W Ozanne ◽  
...  

The relationship between expression of the c-erbB-2 proto-oncogene and the biology of breast cancer has been investigated widely, most studies using immunohistochemistry in formalin-fixed, paraffin-embedded tissues. This technique is at best semiquantitative and there is a high degree of interstudy variability because of its subjective nature and poor methodological standardization. The relationship between the levels of expression and biology can be examined thoroughly only with an accurately quantitative technique. We have developed a radioimmunohistochemical assay to measure p185(erbB-2) in tissue biopsy specimens. The method involves incubating frozen sections with 125I-labeled monoclonal antibody, microautoradiograpy, and grain counting with image analysis. Sections of cell pellets with known c-erbB-2 levels are processed with each batch of samples as internal calibration standards. We have quantified c-erbB-2 expression in 60 breast carcinomas and compared the results with conventional immunohistochemistry. Radioimmunohistochemistry measured receptor levels throughout the range of expression in breast carcinomas, whereas conventional immunohistochemistry detected the protein only in the highest expressing tumors. The quantitative, objective data produced by radioimmunohistochemistry allow a more thorough evaluation of the relationship between c-erbB-2 expression and tumor biology. This technique may have applications in other fields where quantitative data is required and relevant monoclonal antibodies are available.


1995 ◽  
Vol 52 (3) ◽  
pp. 309-316 ◽  
Author(s):  
Yoshito Eizuru ◽  
Yoichi Minamishima ◽  
Tadashi Matsumoto ◽  
Toshinari Hamakado ◽  
Mikio Mizukoshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document