Abstract 4426: Redox regulation of tumor cell heterogeneity in the PyMT mammary tumor model revealed by single cell RNA sequencing

Author(s):  
Zuen Ren ◽  
Malindrie Dharmaratne ◽  
Ameya Kulkarni ◽  
Atefeh Taherian Fard ◽  
Jessica Mar ◽  
...  
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Andrew Donson ◽  
Kent Riemondy ◽  
Sujatha Venkataraman ◽  
Ahmed Gilani ◽  
Bridget Sanford ◽  
...  

Abstract We explored cellular heterogeneity in medulloblastoma using single-cell RNA sequencing (scRNAseq), immunohistochemistry and deconvolution of bulk transcriptomic data. Over 45,000 cells from 31 patients from all main subgroups of medulloblastoma (2 WNT, 10 SHH, 9 GP3, 11 GP4 and 1 GP3/4) were clustered using Harmony alignment to identify conserved subpopulations. Each subgroup contained subpopulations exhibiting mitotic, undifferentiated and neuronal differentiated transcript profiles, corroborating other recent medulloblastoma scRNAseq studies. The magnitude of our present study builds on the findings of existing studies, providing further characterization of conserved neoplastic subpopulations, including identification of a photoreceptor-differentiated subpopulation that was predominantly, but not exclusively, found in GP3 medulloblastoma. Deconvolution of MAGIC transcriptomic cohort data showed that neoplastic subpopulations are associated with major and minor subgroup subdivisions, for example, photoreceptor subpopulation cells are more abundant in GP3-alpha. In both GP3 and GP4, higher proportions of undifferentiated subpopulations is associated with shorter survival and conversely, differentiated subpopulation is associated with longer survival. This scRNAseq dataset also afforded unique insights into the immune landscape of medulloblastoma, and revealed an M2-polarized myeloid subpopulation that was restricted to SHH medulloblastoma. Additionally, we performed scRNAseq on 16,000 cells from genetically engineered mouse (GEM) models of GP3 and SHH medulloblastoma. These models showed a level of fidelity with corresponding human subgroup-specific neoplastic and immune subpopulations. Collectively, our findings advance our understanding of the neoplastic and immune landscape of the main medulloblastoma subgroups in both humans and GEM models.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Haruka Ozaki ◽  
Tetsutaro Hayashi ◽  
Mana Umeda ◽  
Itoshi Nikaido

2015 ◽  
Vol 33 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Florian Buettner ◽  
Kedar N Natarajan ◽  
F Paolo Casale ◽  
Valentina Proserpio ◽  
Antonio Scialdone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document