neuroendocrine prostate cancer
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 176)

H-INDEX

26
(FIVE YEARS 8)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 135
Author(s):  
Panagiotis J. Vlachostergios ◽  
Athanasios Karathanasis ◽  
Vassilios Tzortzis

Background: Advanced prostate cancer (PC) may accumulate genomic alterations that hallmark lineage plasticity and transdifferentiation to a neuroendocrine (NE) phenotype. Fibroblast activation protein (FAP) is a key player in epithelial-to-mesenchymal transition (EMT). However, its clinical value and role in NE differentiation in advanced PC has not been fully investigated. Methods: Two hundred and eight patients from a multicenter, prospective cohort of patients with metastatic castration-resistant prostate cancer (CRPC) with available RNA sequencing data were analyzed for tumor FAP mRNA expression, and its association with overall survival (OS) and NE tumor features was investigated. Results: Twenty-one patients (10%) were found to have high FAP mRNA expression. Compared to the rest, this subset had a proportionally higher exposure to taxanes and AR signaling inhibitors (abiraterone or enzalutamide) and was characterized by active NE signaling, evidenced by high NEPC- and low AR-gene expression scores. These patients with high tumor mRNA FAP expression had a more aggressive clinical course and significantly shorter survival (12 months) compared to those without altered FAP expression (28 months, log-rank p = 0.016). Conclusions: FAP expression may serve as a valuable NE marker indicating a worse prognosis in patients with metastatic CRPC.


2021 ◽  
Vol 23 (1) ◽  
pp. 392
Author(s):  
Che-Yuan Hu ◽  
Kuan-Yu Wu ◽  
Tsung-Yen Lin ◽  
Chien-Chin Chen

Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.


2021 ◽  
pp. clincanres.CCR-21-3762-E.2021
Author(s):  
Jacob E. Berchuck ◽  
Sylvan C. Baca ◽  
Heather M. McClure ◽  
Keegan Korthauer ◽  
Harrison K. Tsai ◽  
...  

2021 ◽  
Author(s):  
André Marquardt ◽  
Philip Kollmannsberger ◽  
Markus Krebs ◽  
Markus Knott ◽  
Antonio Giovanni Solimando ◽  
...  

1.AbstractPersonalized Oncology is a rapidly evolving area and offers cancer patients therapy options more specific than ever. Yet, there is still a lack of understanding regarding transcriptomic similarities or differences of metastases and corresponding primary sites. Approaching this question, we used two different unsupervised dimension reduction methods – t-SNE and UMAP – on three different metastases datasets – prostate cancer, neuroendocrine prostate cancer, and skin cutaneous melanoma – including 682 different samples, with three different underlying data transformations – unprocessed FPKM values, log10 transformed FPKM values, and log10+1 transformed FPKM values – to visualize potential underlying clusters. The approaches resulted in formation of different clusters that were independent of respective resection sites. Additionally, data transformation critically affected cluster formation in most cases. Of note, our study revealed no tight link between the metastasis resection site and specific transcriptomic features. Instead, our analysis demonstrates the dependency of cluster formation on the underlying data transformation and the dimension reduction method applied. These observations propose data transformation as another key element in the interpretation of visual clustering approaches apart from well-known determinants such as initialization and parameters. Furthermore, the results show the need for further evaluation of underlying data alterations based on the biological question and subsequently used methods and applications.


2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Eva Slabáková ◽  
Zuzana Kahounová ◽  
Jiřina Procházková ◽  
Karel Souček

Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shubham Dwivedi ◽  
Maricris Bautista ◽  
Sanskriti Shrestha ◽  
Hussain Elhasasna ◽  
Tanaya Chaphekar ◽  
...  

AbstractThe progression of prostate cancer (PC) into neuroendocrine prostate cancer (NEPC) is a major challenge in treating PC. In NEPC, the PC cells undergo neuroendocrine differentiation (NED); however, the exact molecular mechanism that triggers NED is unknown. Peripheral nerves are recently shown to promote PC. However, their contribution to NEPC was not studied well. In this study, we explored whether sympathetic neurosignaling contributes to NED. We found that human prostate tumors from patients that later developed metastases and castration-resistant prostate cancer (CRPC), a stage preceding to NEPC, have high sympathetic innervations. Our work revealed that high concentrations of the sympathetic neurotransmitter norepinephrine (NE) induces NED-like changes in PC cells in vitro, evident by their characteristic cellular and molecular changes. The NE-mediated NED was effectively inhibited by the Adrβ2 blocker propranolol. Strikingly, propranolol along with castration also significantly inhibited the development and progression of NEPC in vivo in an orthotopic NEPC model. Altogether, our results indicate that the NE-Adrβ2 axis is a potential therapeutic intervention point for NEPC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5765
Author(s):  
Ahmed Taher ◽  
Corey T. Jensen ◽  
Sireesha Yedururi ◽  
Devaki Shilpa Surasi ◽  
Silvana C. Faria ◽  
...  

Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer that typically has a high metastatic potential and poor prognosis in comparison to the adenocarcinoma subtype. Although it can arise de novo, NEPC much more commonly occurs as a mechanism of treatment resistance during therapy for conventional prostatic adenocarcinoma, the latter is also termed as castration-resistant prostate cancer (CRPC). The incidence of NEPC increases after hormonal therapy and they represent a challenge, both in the radiological and pathological diagnosis, as well as in the clinical management. This article provides a comprehensive imaging review of prostatic neuroendocrine tumors.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Yu-Ching Wen ◽  
Yen-Nien Liu ◽  
Hsiu-Lien Yeh ◽  
Wei-Hao Chen ◽  
Kuo-Ching Jiang ◽  
...  

AbstractNeuroendocrine differentiation (NED) is associated with WNT signaling activation and can be significantly observed after failure of androgen-deprivation therapy (ADT) for prostatic adenocarcinomas. Cytokine signaling is stimulated in NED prostate cancer; however, how ADT-upregulated WNT signaling promotes activation of cytokine signaling and contributes to NED of prostate cancer is poorly understood. In this study, we identified ADT-mediated upregulation of transcription factor 7 like 1 (TCF7L1), which increases the cytokine response and enhances NED of prostate cancer through interleukin (IL)-8/C-X-C motif chemokine receptor type 2 (CXCR2) signaling activation. ADT induced the secretion of WNT4 which upon engagement of TCF7L1 in prostate cancer cells, enhanced IL-8 and CXCR2 expressions. TCF7L1 directly binds to the regulatory sequence region of IL-8 and CXCR2 through WNT4 activation, thus upregulating IL-8/CXCR2 signaling-driven NED and cell motility. Analysis of prostate tissue samples collected from small-cell neuroendocrine prostate cancer (SCPC) and castration-resistant prostate cancer (CRPC) tumors showed an increased intensity of nuclear TCF7L1 associated with CXCR2. Our results suggest that induction of WNT4/TCF7L1 results in increased NED and malignancy in prostate cancer that is linked to dysregulation of androgen receptor signaling and activation of the IL-8/CXCR2 pathway.


Sign in / Sign up

Export Citation Format

Share Document