scholarly journals Abstract 2970: Lower PTIP expression in appendiceal cancer is linked to oxaliplatin based HIPEC therapy resistance in patient derived tumor organoids

Author(s):  
Steven D. Forsythe ◽  
Richard A. Erali ◽  
Preston Laney ◽  
Shyama Sasikumar ◽  
Perry Shen ◽  
...  
2020 ◽  
Author(s):  
Giulia Pinto ◽  
Inés Saenz de Santa Maria ◽  
Patricia Chastagner ◽  
Emeline Perthame ◽  
Caroline Delmas ◽  
...  

Glioblastoma (GBM) is the most aggressive brain cancer and its relapse after surgery, chemo and radiotherapy appears to be led by GBM stem cells (GSLCs). Also, tumor networking and intercellular communication play a major role in driving GBM therapy-resistance. Tunneling Nanotubes (TNTs), thin membranous open-ended channels connecting distant cells, have been observed in several types of cancer, where they emerge to drive a more malignant phenotype. Here, we investigated whether GBM cells are capable to intercommunicate by TNTs. Two GBM stem-like cells (GSLCs) were obtained from the external and infiltrative zone of one GBM from one patient. We show, for the first time, that both GSLCs, grown in classical 2D culture and in 3D-tumor organoids, formed functional TNTs which allowed mitochondria transfer. In the organoid model, recapitulative of several tumor’s features, we observed the formation of a network between cells constituted of both Tumor Microtubes (TMs), previously observed in vivo, and TNTs. In addition, the two GSLCs exhibited different responses to irradiation in terms of TNT induction and mitochondria transfer, although the correlation with the disease progression and therapy-resistance needs to be further addressed. Thus, TNT-based communication is active in different GSLCs derived from the external tumoral areas associated to GBM relapse, and we propose that they participate together with TMs in tumor networking.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3636
Author(s):  
Silvia Vivarelli ◽  
Saverio Candido ◽  
Giuseppe Caruso ◽  
Luca Falzone ◽  
Massimo Libra

Malignancies heterogeneity represents a critical issue in cancer care, as it often causes therapy resistance and tumor relapse. Organoids are three-dimensional (3D) miniaturized representations of selected tissues within a dish. Lately, organoid technology has been applied to oncology with growing success and Patients Derived Tumor Organoids (PDTOs) constitute a novel available tool which fastens cancer research. PDTOs are in vitro models of cancer, and importantly, they can be used as a platform to validate the efficacy of anti-cancer drugs. For that reason, they are currently utilized in clinics as emerging in vitro screening technology to tailor the therapy around the patient, with the final goal of beating cancer resistance and recurrence. In this sense, PDTOs biobanking is widely used and PDTO-libraries are helping the discovery of novel anticancer molecules. Moreover, they represent a good model to screen and validate compounds employed for other pathologies as off-label drugs potentially repurposed for the treatment of tumors. This will open up novel avenues of care thus ameliorating the life expectancy of cancer patients. This review discusses the present advancements in organoids research applied to oncology, with special attention to PDTOs and their translational potential, especially for anti-cancer drug testing, including off-label molecules.


2020 ◽  
Author(s):  
Giulia Pinto ◽  
Inés Saenz-de-Santa-Maria ◽  
Patricia Chastagner ◽  
Emeline Perthame ◽  
Caroline Delmas ◽  
...  

AbstractGlioblastoma (GBM) is the most aggressive brain cancer and its relapse after surgery, chemo and radiotherapy appears to be led by GBM stem cells (GSLCs). Also, tumor networking and intercellular communication play a major role in driving GBM therapy-resistance. Tunneling Nanotubes (TNTs), thin membranous open-ended channels connecting distant cells, have been observed in several types of cancer, where they emerge to drive a more malignant phenotype. Here, we investigated whether GBM cells are capable to intercommunicate by TNTs. Two GBM stem-like cells (GSLCs) were obtained from the external and infiltrative zone of one GBM from one patient. We show, for the first time, that both GSLCs, grown in classical 2D culture and in 3D-tumor organoids, formed functional TNTs which allowed mitochondria transfer. In the organoid model, recapitulative of several tumor’s features, we observed the formation of a network between cells constituted of both Tumor Microtubes (TMs), previously observed in vivo, and TNTs. In addition, the two GSLCs exhibited different responses to irradiation in terms of TNT induction and mitochondria transfer, although the correlation with the disease progression and therapy-resistance needs to be further addressed. Thus, TNT-based communication is active in different GSLCs derived from the external tumoral areas associated to GBM relapse, and we propose that they participate together with TMs in tumor networking.


10.33540/153 ◽  
2020 ◽  
Author(s):  
◽  
Krijn Kristian Dijkstra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document