scholarly journals Thyroid Hormone Receptor Beta Induces a Tumor-Suppressive Program in Anaplastic Thyroid Cancer

2020 ◽  
Vol 18 (10) ◽  
pp. 1443-1452 ◽  
Author(s):  
Eric L. Bolf ◽  
Noelle E. Gillis ◽  
Cole D. Davidson ◽  
Princess D. Rodriguez ◽  
Lauren Cozzens ◽  
...  
2020 ◽  
Author(s):  
Cole D. Davidson ◽  
Eric L. Bolf ◽  
Noelle E. Gillis ◽  
Lauren M. Cozzens ◽  
Jennifer A. Tomczak ◽  
...  

AbstractThyroid cancer is the most common endocrine malignancy, and the global incidence has increased rapidly over the past few decades. Anaplastic thyroid cancer (ATC) is highly aggressive, dedifferentiated, and patients have a median survival of fewer than six months. Oncogenic alterations in ATC include aberrant PI3K signaling through receptor tyrosine kinase (RTK) amplification, loss of phosphoinositide phosphatase expression and function, and Akt amplification. Furthermore, the loss of expression of the tumor suppressor thyroid hormone receptor beta (TRβ) is strongly associated with ATC. TRβ is known to suppress PI3K in follicular thyroid cancer and breast cancer by binding to the PI3K regulatory subunit p85α. However, the role of TRβ in suppressing PI3K signaling in ATC is not completely delineated. Here we report that TRβ indeed suppresses PI3K signaling in ATC through unreported genomic mechanisms including a decrease in RTK expression and increase in phosphoinositide and Akt phosphatase expression. Furthermore, the reintroduction and activation of TRβ in ATC enables an increase in the efficacy of the competitive PI3K inhibitors LY294002 and buparlisib on cell viability, migration, and suppression of PI3K signaling. These findings not only uncover additional tumor suppressor mechanisms of TRβ but shed light into the implication of TRβ status and activation on inhibitor efficacy in ATC tumors.Abstract FigureGraphical abstract


Author(s):  
Cole D Davidson ◽  
Eric L Bolf ◽  
Noelle E Gillis ◽  
Lauren M Cozzens ◽  
Jennifer A Tomczak ◽  
...  

Abstract Thyroid cancer is the most common endocrine malignancy, and the global incidence has increased rapidly over the past few decades. Anaplastic thyroid cancer (ATC) is highly aggressive, dedifferentiated, and patients have a median survival of fewer than six months. Oncogenic alterations in ATC include aberrant PI3K signaling through receptor tyrosine kinase (RTK) amplification, loss of phosphoinositide phosphatase expression and function, and Akt amplification. Furthermore, the loss of expression of the tumor suppressor thyroid hormone receptor beta (TRβ) is strongly associated with ATC. TRβ is known to suppress PI3K in follicular thyroid cancer and breast cancer by binding to the PI3K regulatory subunit p85⍺. However, the role of TRβ in suppressing PI3K signaling in ATC is not completely delineated. Here we report that TRβ indeed suppresses PI3K signaling in ATC cell lines through unreported genomic mechanisms including a decrease in RTK expression and increase in phosphoinositide and Akt phosphatase expression. Furthermore, the reintroduction and activation of TRβ in ATC cell lines enables an increase in the efficacy of the competitive PI3K inhibitors LY294002 and buparlisib on cell viability, migration, and suppression of PI3K signaling. These findings not only uncover additional tumor suppressor mechanisms of TRβ but shed light into the implication of TRβ status and activation on inhibitor efficacy in ATC tumors.


2021 ◽  
Author(s):  
Noelle E Gillis ◽  
Cole D Davidson ◽  
Lauren M Cozzens ◽  
Emily R Wilson ◽  
Eric L Bolf ◽  
...  

Background: Anaplastic thyroid cancer (ATC) is one of the most lethal endocrine cancers, with an average survival time of six months after diagnosis. These aggressive tumors have very limited treatment options highlighting a need for a deeper understanding of its mechanisms for development of more effective therapies. We have previously shown that the liganded thyroid hormone receptor beta (TRβ) can function as a tumor suppressor and induce re-differentiation in ATC cells. We therefore tested the hypothesis that selective activation of TRβ with sobetirome (GC-1) could reduce the tumorigenic phenotypes of ATC cell lines and improve the efficacy of clinically relevant therapeutics. Methods: We used a panel of four ATC cell lines with variable genetic backgrounds to assess the ability of GC-1 to reduce the aggressive phenotype. The effects of GC-1 alone or in combination with buparlisib, alpelisib, sorafenib, and palbociclib on cell growth, viability, and migration were determined and compared with the gene expression levels of selected markers. The impact of these treatments on the cancer stem cell population was assessed by tumorsphere assay. Thyroid differentiation markers were measured by gene analysis, and sodium iodide symporter (NIS) protein level and function were determined. Results: Our results show that GC-1 alone can decrease cell viability, growth, and slow cell migration in all four ATC cell lines. In addition, GC-1 is able to further block each of these phenotypes when combined with buparlisib, alpelisib, sorafenib, or palbociclib. GC-1 alone blocks thyrosphere outgrowth in all cell lines and increases the efficacy of each of the therapeutic agents tested. GC-1 increased NIS transcript and protein levels to allow for increased iodide uptake in ATC cells. Conclusion: Activation of TRβ with selective agonist sobetirome (GC-1) reduces the aggressive phenotype and induced re-differentiation in ATC cells and increases the efficacy of therapeutic agents that are currently used in the treatment of ATC. These results indicate that selective activation of TRβ not only induces a tumor suppression program de novo but enhances the effectiveness of anti-cancer agents.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Noelle Gillis ◽  
Eric Bolf ◽  
Cole Davidson ◽  
Jennifer Tomczak ◽  
Seth Frietze ◽  
...  

2021 ◽  
Author(s):  
Eric L. Bolf ◽  
Noelle E. Gillis ◽  
Cole D. Davidson ◽  
Lauren M. Cozzens ◽  
Sophie Kogut ◽  
...  

2006 ◽  
Vol 16 (4) ◽  
pp. 884-886 ◽  
Author(s):  
Yi-Lin Li ◽  
Chris Litten ◽  
Konrad F. Koehler ◽  
Karin Mellström ◽  
Neeraj Garg ◽  
...  

2007 ◽  
Vol 192 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Ana Sofia Rocha ◽  
Ricardo Marques ◽  
Inês Bento ◽  
Ricardo Soares ◽  
João Magalhães ◽  
...  

Thyroid cancer constitutes the most frequent endocrine neoplasia. Targeted expression of rearranged during transfection (RET)/papillary thyroid carcinoma (PTC) and V600E V-raf murine sarcoma viral oncogene homolog B1 (BRAF) to the thyroid glands of transgenic mice results in tumours similar to those of human PTC, providing evidence for the involvement of these oncogenes in PTC. Kato et al. developed a mouse model that mimics the full spectrum of the human follicular form of thyroid cancer (FTC). FTC rapidly develops in these mice through introduction of the thyroid hormone receptor β (THRB)PV mutant on the background of the inactivated THRB wt locus. Our aim was to verify if, in the context of human follicular thyroid carcinogenesis, THRB acted as a tumour suppressor gene. We screened for mutations of the THRB gene in the hot-spot region, spanning exons 7–10, in 51 thyroid tumours and six thyroid cancer cell lines by PCR and direct sequencing. We did not find mutations in any of the tumours or cell lines analysed. Our findings suggest that, in contrast to the findings on the THRB-mutant transgenic mice, THRB gene mutations are not a relevant mechanism for human thyroid carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document