scholarly journals Comparative Effect of 200 KV. X-Rays and Gamma Rays on the Pupae of Drosophila Melanogaster: I. Determination of "Equivalent Roentgen" Value for Gamma Rays: II. Summation Experiments with X-Rays and Gamma Rays

1938 ◽  
Vol 32 (4) ◽  
pp. 565-581 ◽  
Author(s):  
J. H. Muller
Author(s):  
Ahmet Tursucu ◽  
Mehmet Haskul ◽  
Asaf Tolga Ulgen

In the current work, it was investigated to the K X-ray fluorescence efficiency and chemical effect on vacancy transfer probability for some tin compounds. We used Br2Tin, TinI2, SeTin, TinF2, TinSO4, TinCl2, TinO and TinS compounds for experimental study. The target samples were irradiated with 241Am annular radioactive source at the intensity of 5 Ci which emits gamma rays at wavelength of 0.2028 nm. The characteristic x-rays emitted because of the excitation are collected by a high-resolution HPGe semiconductor detector. It has been determined that the experimental calculations of the tin (Sn) element are compatible with the theoretical calculation. In addition, we have calculated the experimental intensity ratios, fluorescence yields and total vacancy transfer probabilitiesfor other Sn compounds. 


Author(s):  
Ahmet Tursucu ◽  
Mehmet Haskul ◽  
Asaf Tolga Ulgen

In the current work, it was investigated to the K X-ray fluorescence efficiency and chemical effect on vacancy transfer probability for some tin compounds. We used Br2Tin, TinI2, SeTin, TinF2, TinSO4, TinCl2, TinO and TinS compounds for experimental study. The target samples were irradiated with 241Am annular radioactive source at the intensity of 5 Ci which emits gamma rays at wavelength of 0.2028 nm. The characteristic x-rays emitted because of the excitation are collected by a high-resolution HPGe semiconductor detector. It has been determined that the experimental calculations of the tin (Sn) element are compatible with the theoretical calculation. In addition, we have calculated the experimental intensity ratios, fluorescence yields and total vacancy transfer probabilitiesfor other Sn compounds. 


Author(s):  
Ahmet Tursucu ◽  
Mehmet Haskul ◽  
Asaf Tolga Ulgen

In the current work, it was investigated to the K X-ray fluorescence efficiency and chemical effect on vacancy transfer probability for some tin compounds. We used Br2Tin, TinI2, SeTin, TinF2, TinSO4, TinCl2, TinO and TinS compounds for experimental study. The target samples were irradiated with 241Am annular radioactive source at the intensity of 5 Ci which emits gamma rays at wavelength of 0.2028 nm. The characteristic x-rays emitted because of the excitation are collected by a high-resolution HPGe semiconductor detector. It has been determined that the experimental calculations of the tin (Sn) element are compatible with the theoretical calculation. In addition, we have calculated the experimental intensity ratios, fluorescence yields and total vacancy transfer probabilitiesfor other Sn compounds. 


Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.


1998 ◽  
Vol 492 (1) ◽  
pp. 228-245 ◽  
Author(s):  
P. Hoflich ◽  
J. C. Wheeler ◽  
A. Khokhlov

1999 ◽  
Vol 511 (1) ◽  
pp. 204-207 ◽  
Author(s):  
Vincent Tatischeff ◽  
Reuven Ramaty
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document