Problems in Thin-Film X-ray Quantification

Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.

1993 ◽  
Vol 308 ◽  
Author(s):  
I. C. Noyan ◽  
G. Sheikh

ABSTRACTThe mechanical response of a specimen incorporating thin films is dictated by a combination of fundamental mechanical parameters such as Young's moduli of the individual layers, and by configurational parameters such as adhesion strength at the interface(s), residual stress distribution and other process dependent factors. In most systems, the overall response will be dominated by the properties of the (much thicker) substrate. Failure within the individual layers, on the other hand, is dependent on the local strain distributions and can not be predicted from the substrate values alone. To better understand the mechanical response of these systems, the strain within the individual layers of the thin film system must be measured and correlated with applied stresses. Phase selectivity of X-ray stress/strain analysis techniques is well suited for this purpose. In this paper, we will review the use of the traditional x-ray stress/strain analysis methods for the determination of the mechanical properties of thin film systems.


Author(s):  
Pierre Hovington ◽  
Gilles L'Espéiance

The increased use of Si(Li) energy dispersive x-ray spectrometers (EDS) with a windowless (WL) or ultra thinwindow (UTW) detectors has made the detection of light elements down to Be a routine laboratory procedure. The quantification of EDS spectra implies that the net intensity of the characteristic peak of interest must be determined accurately. For light-element x-rays for which the background is non linear and for which the Kα lines can often overlap with the L and M lines of transition metals, the simple determination of the characteristic intensity is not a straightforward operation and often requires sophisticated data processing. The use of a conventional least-squares fitting technique with prefiltering of standard spectra for deconvolution is made difficult by the non-linearity of the background, the presence of the triggered noise peak below 0.3 KeV, and the lack of appropiate standards. In addition to the difficulty associated with the determination of the net intensity, the uncertainties for the detection efficiency below 1 Kev has limited the use of standardless procedures for quantification.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


2003 ◽  
Vol 784 ◽  
Author(s):  
Dal-Hyun Do ◽  
Dong Min Kim ◽  
Chang-Beom Eom ◽  
Eric M. Dufresne ◽  
Eric D. Isaacs ◽  
...  

ABSTRACTThe evolution of stored ferroelectric polarization in PZT thin film capacitors was imaged using synchrotron x-ray microdiffraction with a submicron-diameter focused incident x-ray beam. To form the capacitors, an epitaxial Pb(Zr,Ti)O3 (PZT) thin film was deposited on an epitaxially-grown conductive SrRuO3 (SRO) bottom electrode on a SrTiO3 (STO) (001) substrate. Polycrystalline SRO or Pt top electrodes were prepared by sputter deposition through a shadow mask and subsequent annealing. The intensity of x-ray reflections from the PZT film depended on the local ferroelectric polarization. With 10 keV x-rays, regions of opposite polarization differed in intensity by 26% in our PZT capacitor with an SRO top electrode. Devices with SRO electrodes showed just a 25% decrease in the remnant polarization after 107 switching cycles. In devices with Pt top electrodes, however, the switchable polarization decreased a by 70% after only 5×104 cycles.


The measurement of the intensity of an X-ray beam in absolute units is in theory most satisfactorily accomplished by a determination of its heating effect. The method, however, is attended by considerable experimental difficulties, so that its application is very limited, and in practice it is usual to replace it by a determination of the ionization produced when the beam is passed through a gas. To correlate the ionization with an absolute intensity requires a quantitative knowledge of the details of the interaction between the X-rays and the molecules concerned and of the ionization of the gas by the ejected electrons. It sometimes happens that the processes involved about which we know least are relatively unimportant, so that a fairly reliable correlation can be made; and much work has been done on the application of the ionization method to X-ray dosimetry. But in general a quantitative correlation between ionization and intensity is not possible. A further study of the ionization of gases by X-rays is therefore desirable; moreover it may be made to yield important information concerning the processes involved. The early development of the physics of X-rays contains many examples of this, and more recently an important contribution has been made by Stockmeyer. The events leading to the ionization of a heavy gas are exceedingly complicated, whereas in the light gases (hydrogen and helium) some of these events are absent or else occur to a negligible extent, so that the interpretation of experiments with the latter becomes simpler and more reliable. These gases are therefore specially worthy of study. Moreover, for them the application of quantum mechanics leads to the most definite results for comparison with experiment, and in particular permits of a direct test of some aspects of Dirac’s theory of recoil scattering. The ionization due to the gas itself is, however, very small, and may even be less than the secondary ionization due to electrons liberated from the chamber walls. The technique used in ionization measurements with heavy gases is therefore unsuitable. Hitherto the only attempt made to extend such measurements to light gases is an experiment carried out in 1915 on hydrogen by Shearer who, however, obtained very variable results and an ionization markedly smaller than that to be expected from recoil electrons alone. Moreover his experimental method is now open to criticism in view of our greater knowledge of X-rays, and in particular the fluorescent radiation used was of doubtful homogeneity. The present paper will describe a new technique suitable for quantitative measurements of the ionization produced by X-rays in light gases, and in another paper it will be applied to a re-investigation of hydrogen.


1926 ◽  
Vol 22 (5-6) ◽  
pp. 737
Author(s):  
I. Friedland

Arikhbaev (Vesti. Khir., 1926, book 17-18), having established the normal state of the lipolytic index in 30 people with various diseases and then proceeding to the determination of lipase in the blood of 9 various patients and 1 healthy subject exposed to irritating doses of X-ray rays on the adrenal gland, which caused its hyperfunction, finished his research by observing 5 patients with various forms of surgical tuberculosis, of whom three underwent simultaneous x-rays of the adrenal glands with subcutaneous injections of fish oil neutralized from fatty acids, one - only injections of neutralized fish oil and one - only an operational aid.


2008 ◽  
Vol 4 (S256) ◽  
pp. 20-29 ◽  
Author(s):  
Yaël Nazé

AbstractIn the study of stars, the high energy domain occupies a place of choice, since it is the only one able to directly probe the most violent phenomena: indeed, young pre-main sequence objects, hot massive stars, or X-ray binaries are best revealed in X-rays. However, previously available X-ray observatories often provided only crude information on individual objects in the Magellanic Clouds. The advent of the highly efficient X-ray facilities XMM-Newton and Chandra has now dramatically increased the sensitivity and the spatial resolution available to X-ray astronomers, thus enabling a fairly easy determination of the properties of individual sources in the LMC.


Sign in / Sign up

Export Citation Format

Share Document