Primary Cultures of Astrocytes from Different Brain Areas of Newborn Rats and Effects of Basic Fibroblast Growth Factor

1990 ◽  
Vol 12 (1) ◽  
pp. 11-21 ◽  
Author(s):  
F. Perraud ◽  
G. Labourdette ◽  
F. Eclancher ◽  
M. Sensenbrenner
Endocrinology ◽  
2004 ◽  
Vol 145 (3) ◽  
pp. 1473-1480 ◽  
Author(s):  
Souichi Oomizu ◽  
Kirti Chaturvedi ◽  
Dipak K. Sarkar

Abstract Estradiol is known to increase lactotropic cell proliferation, but estradiol susceptibility varies among human populations and among various strains of rats. We had reported that folliculostellate (FS) cells regulate estradiol’s mitogenic action on lactotropes; therefore, we studied their role in determining the susceptibility to estradiol in a high estradiol-responsive rat strain, Fischer 344 (F344), and in a low-responsive strain, Sprague Dawley (SD). Determination of total S-100-positive FS cells in the pituitary revealed that F344 rats have significantly more FS cells than do SD rats. Estradiol treatment did not change the number of FS cells in both F344 and SD rats. When cotransplanted with F344 pituitaries under the kidney capsule or cocultured with F344-derived lactotropes in vitro, FS cells derived from F344 rats increased estradiol’s mitogenic action. They also increased estradiol’s mitogenic action on SD-derived lactotropes in primary cultures. However, SD-derived FS cells failed to increase estrogen’s action on F344- or SD-derived lactotropes. The levels of basic fibroblast growth factor production and secretion by TGF-β3 and estradiol were much higher in F344-derived FS cells than in SD-derived FS cells. However, the lactotropes’ growth response to basic fibroblast growth factor was similar in both strains. These data suggest that cell-cell interaction between FS cells and lactotropes regulates estradiol’s mitogenic action on lactotropes and also determines lactotrope susceptibility to the steroid.


1996 ◽  
Vol 5 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Yung H. Chiang ◽  
Vincenzo Silani ◽  
Feng C. Zhou

Procurement of multipotential neuroglial stem cells is possible with the addition of epidermal growth factor (EGF). Stem cells will differentiate into neurons and glia upon the removal of EGF from the culture medium. We have previously characterized the neuronal differentiation of stem cells derived from long-term cultured nonpassage neurospheres. In the current study, we (1) characterize the morphological differentiation of the astroglial progenitor cell from 3-mo-old neurospheres, (2) examine whether the astroglial progenitor cells from neurospheres of different brain areas exhibit different differentiation responses to the same exogenous signals, and (3) test the effects of basic fibroblast growth factor (bFGF) and retinol on differentiation. Cerebral cortex, striatum, and mesencephalon cells were obtained from Embryonic Day 14 (E-14) rat fetuses and were dissociated for the procurement of neurospheres in chemically defined medium supplemented with EGF. After 3 mo in culture, the neurospheres, derived from each of the three brain areas, were subcultured into three groups on chamber slides: (1) basal medium, (2) the basal medium plus 20 ng/mL bFGF, and (3) the basal medium plus 10 μM retinol. Phenotypic expression of astroglial cells was examined after 14 days subculture. Our findings indicate that the 3-mo-old cultured nonpassage neurospheres contained numerous multipotential stem cells that stained positive with nestin, and that environmental factors played an important role in influencing the differentiation of astroglial progenitor cells. As detected by glial fibrillary acid protein (GFAP), astroglial progenitor cells turned into protoplasmic astrocytes in the FCS-containing basal medium, fibrous astrocytes in the presence of bFGF, and spindle-shaped astrocytes in the presence of retinol. There were no noticeable differences in differentiation among astroglial progenitor cells of the various brain region-derived neurospheres in any of the three medium conditions. Peculiar varicosity-and growth cone-like structures on the long slender GFAP-positive processes suggest that neuroblasts and glioblast may share common morphologies, features, or common progenitor cells during initial differentiation in vitro.


2006 ◽  
Vol 68 (3) ◽  
pp. 248-250 ◽  
Author(s):  
Shuko OKADA ◽  
Takashi MASU ◽  
Takahiko TSUNODA ◽  
Ryuhei OKUYAMA ◽  
Setsuya AIBA

Sign in / Sign up

Export Citation Format

Share Document