Change of Extracellular Glutamate and Gamma-Aminobutyric Acid in Substantia Nigra and Globus Pallidus during Electrical Stimulation of Subthalamic Nucleus in Epileptic Rats

2008 ◽  
Vol 86 (4) ◽  
pp. 208-215 ◽  
Author(s):  
Bin Zhang ◽  
Junsheng Chu ◽  
Jianguo Zhang ◽  
Yu Ma
1994 ◽  
Vol 14 (1) ◽  
pp. 132-144 ◽  
Author(s):  
Minas Tzagournissakis ◽  
Catherine R. Dermon ◽  
Helen E. Savaki

The alterations in local metabolic activity of several anatomically distinct brain areas were investigated by means of the quantitative autoradiographic 2-deoxy-D-[1-14C]glucose method in awake rats during unilateral electrical stimulation of the subthalamic nucleus (STH). Unilateral electrical stimulation of the STH induced local metabolic activation (by 70% as compared with the control group), as well as distal metabolic activations in the substantia nigra reticulata (by 34%), globus pallidus (by 19%), entopeduncular nucleus (by 18%), deep layers of the superior colliculi (by 15%), and parafascicular thalamic nucleus (by 18%), ipsilaterally to the stimulated side. The ventrolateral motor thalamic nucleus as well as the limbic components, posterior cingulate cortex, and anteroventral thalamic nucleus displayed bilateral metabolic activations (by 20–28%). These results indicate that, in addition to its known ipsilateral motor connections, each STH is functionally related to the limbic system bilaterally. It is suggested that the STH is a site where the central motor information is accessible to the limbic system. Quantitative image analysis of individual serial sections in the STH, substantia nigra, and globus pallidus revealed a consistent dorsoventral pattern of topographic interrelations. Stimulation of either the dorsal or the ventral subdivision of the STH induced always stronger activation in the dorsal compartment of the substantia nigra and in the ventral compartment of the globus pallidus. These results suggest that the earlier-described inversion of the dorsoventral functional correspondence between the substantia nigra and globus pallidus may be partly mediated via the subthalamic nerve cells projecting collateral axons to both these areas.


1992 ◽  
Vol 72 (1) ◽  
pp. 121-127 ◽  
Author(s):  
T. G. Bedford ◽  
P. K. Loi ◽  
C. C. Crandall

The purpose of this study was to develop a dynamic exercise model in the rat that could be used to study central nervous system control of the cardiovascular system. Rats of both sexes were decerebrated under halothane anesthesia and prepared for induced locomotion on a freely turning wheel. Electrical stimulation of the mesencephalic locomotor region (MLR) elicited locomotion at different speeds and gait patterns and increased heart rate and blood pressure. Two maneuvers were performed to illustrate the potential use of the preparation. The first maneuver consisted of muscular paralysis, which prevents excitation of muscle mechanoreceptors and chemoreceptors resulting from exercise. MLR stimulation still increased blood pressure. The second maneuver was performed to determine whether the blood pressure response obtained during paralysis was an artifact of electrical stimulation of the MLR. After microinjection of gamma-aminobutyric acid into the MLR, electrical current thresholds for blood pressure and locomotion increased in parallel. gamma-Aminobutyric acid injection also reduced the pressor response to suprathreshold electrical stimulation by 76%. The injection results suggest that electrical stimulation of the MLR activates cells rather than fibers of passage. The blood pressure response of the exercise model is probably not an artifact of stimulation. The decerebrate rat locomotor preparation should offer another approach to investigate difficult problems in exercise physiology.


2004 ◽  
Vol 100 (6) ◽  
pp. 997-1001 ◽  
Author(s):  
Mitsuhiro Ogura ◽  
Naoyuki Nakao ◽  
Ekini Nakai ◽  
Yuji Uematsu ◽  
Toru Itakura

Object. Although chronic electrical stimulation of the globus pallidus (GP) has been shown to ameliorate motor disabilities in Parkinson disease (PD), the underlying mechanism remains to be clarified. In this study the authors explored the mechanism for the effects of deep brain stimulation of the GP by investigating the changes in neurotransmitter levels in the cerebrospinal fluid (CSF) during the stimulation. Methods. Thirty patients received chronic electrical stimulation of the GP internus (GPi). Clinical effects were assessed using the Unified PD Rating Scale (UPDRS) and the Hoehn and Yahr Staging Scale at 1 week before surgery and at 6 and 12 months after surgery. One day after surgery, CSF samples were collected through a ventricular tube before and 1 hour after GPi stimulation. The concentration of neurotransmitters such as γ-aminobutyric acid (GABA), noradrenaline, dopamine, and homovanillic acid (HVA) in the CSF was measured using high-performance liquid chromatography. The treatment was effective for tremors, rigidity, and drug-induced dyskinesia. The concentration of GABA in the CSF increased significantly during stimulation, although there were no significant changes in the level of noradrenaline, dopamine, and HVA. A comparison between an increased rate of GABA concentration and a lower UPDRS score 6 months postimplantation revealed that the increase in the GABA level correlated with the stimulation-induced clinical effects. Conclusions. Stimulation of the GPi substantially benefits patients with PD. The underlying mechanism of the treatment may involve activation of GABAergic afferents in the GP.


Sign in / Sign up

Export Citation Format

Share Document