Urinary Procoagulant Activity and Tissue Factor Levels in Patients with Diabetes mellitus

1997 ◽  
Vol 27 (2) ◽  
pp. 57-64
Author(s):  
Hasenqiqigel Qi ◽  
Takatoshi Koyama ◽  
Kenji Nishida ◽  
Nobuyuki Miyasaka ◽  
Shinsaku Hirosawa
2007 ◽  
Vol 98 (11) ◽  
pp. 1007-1013 ◽  
Author(s):  
Vijender Vaidyula ◽  
Uday Kanamalla ◽  
Michael De Angelis ◽  
John Gaughan ◽  
Nina Gentile ◽  
...  

SummaryAlterations in blood coagulation may explain the poorer neurological outcome with diabetes mellitus and hyperglycemia after acute ischemic stroke. We studied the relationships between diabetes mellitus, hyperglycemia, whole blood tissue factor procoagulant activity (TF-PCA) and plasma Factor VIIa (FVIIa) in ten patients with type 2 diabetes mellitus and 11 non-diabetic patients at baseline and 6, 12, 24, and 48 hours (h) after presentation for acute stroke. In addition, we examined plasma prothrombin fragment 1+2 (F1.2) and thrombin-antithrombin complexes (TAT) as markers of thrombin generation. Stroke severity, assessed by National Institute of Health Stroke Scale (NIHSS), was similar at baseline (p=0.26) but worse in diabetic (8.20 ± 4.3) than nondiabetic patients (2.67 ± 2.1,p=0.023) at 48 h. At presentation, diabetic patients had higher FVIIa (p=0.004) and lower TF-PCA (p=0.027) than non-diabetic patients but both were higher than in normal control subjects. FVIIa levels remained higher in diabetic patients at 6, 12 and 24 h after stroke. In diabetic patients, FVIIa (r=0.40, p=0.02) and TF-PCA (r=0.50, p=0.02) correlated with blood glucose; and, FVIIa correlated with plasma F1.2 (r=0.34, p=0.002) and TAT levels (r=0.62, p<0.0001). In non-diabetic patients, TF-PCA, but not FVIIa, correlated with F1.2 (r=0.402, p=0.010) andTAT (r=0.39, p=0.011). Combining both groups, NIHSS scores were positively related to FVIIa levels (r=0.50,p=0.021) and inversely related toTF-PCA levels (r=-0.498, p=0.02). Acute ischemic stroke patients with diabetes and hyperglycemia have a more intense procoagulant state compared with nondiabetic patients. This is related to glucose levels and provides a potential mechanism for the observed worse prognosis in such patients after acute stroke.


Author(s):  
Bruce R. Pachter

Diabetes mellitus is one of the commonest causes of neuropathy. Diabetic neuropathy is a heterogeneous group of neuropathic disorders to which patients with diabetes mellitus are susceptible; more than one kind of neuropathy can frequently occur in the same individual. Abnormalities are also known to occur in nearly every anatomic subdivision of the eye in diabetic patients. Oculomotor palsy appears to be common in diabetes mellitus for their occurrence in isolation to suggest diabetes. Nerves to the external ocular muscles are most commonly affected, particularly the oculomotor or third cranial nerve. The third nerve palsy of diabetes is characteristic, being of sudden onset, accompanied by orbital and retro-orbital pain, often associated with complete involvement of the external ocular muscles innervated by the nerve. While the human and experimental animal literature is replete with studies on the peripheral nerves in diabetes mellitus, there is but a paucity of reported studies dealing with the oculomotor nerves and their associated extraocular muscles (EOMs).


1988 ◽  
Vol 59 (02) ◽  
pp. 269-272 ◽  
Author(s):  
M B Grant ◽  
C Guay ◽  
R Lottenberg

SummaryDesmopressin acetate administration markedly stimulates release of tissue plasminogen activator (t-PA) from vascular endothelial cells. The mechanism for this effect is unknown. Because infusion of epinephrine has been shown to increase t-PA levels, we examined the role of endogenous catecholamine mediation of t-PA release by desmopressin. Intravenous desmopressin acetate (0.3 μg/kg) was infused over 30 min in 9 controls and 11 subjects with diabetes mellitus, a condition associated with abnormalities of the fibrinolytic system. Plasma was collected in the supine, overnight fasted state at 15 min intervals (0-60 min) for measurement of t-PA activity, t-PA antigen and fractionated catecholamines. t-PA activity peaked at 30-45 min and subsequently decreased. The norepinephrine levels paralleled the t-PA activity. t-PA activity increased 10-fold from 0.14 ± .12 to 1.49 ± 0.79 IU/ml (Mean ± SD) and plasma norepinephrine increased 2- fold from 426 ± 90 to 780 ± 292 pg/ml. However, epinephrine and dopamine levels did not change significantly. The response to desmopressin of control and diabetic subjects was not shown to differ and their data were combined. We conclude that desmopressin increases plasma norepinephrine in addition to t-PA and that the parallel time course of change suggests a possible role for norepinephrine in mediating endothelial cell t-PA release.


Sign in / Sign up

Export Citation Format

Share Document