Increasing Indications for Implanted Cardiac Pacemaker in Nigeria

Author(s):  
T. O. Cole ◽  
C. O. Mbanefo
Keyword(s):  
2007 ◽  
Author(s):  
Andrew A. Gage ◽  
Anthony J. Federico
Keyword(s):  

MedEdPORTAL ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Jmir Cousar ◽  
Michael Bohanske ◽  
Jeffery Hill

2020 ◽  
Vol 22 (1) ◽  
pp. 9-14
Author(s):  
Jun-Hyub Lee ◽  
Sun-young Kang
Keyword(s):  
Low Dose ◽  

2021 ◽  
Vol 8 (4) ◽  
pp. 40
Author(s):  
Marietta Easterling ◽  
Simone Rossi ◽  
Anthony J Mazzella ◽  
Michael Bressan

Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


Sign in / Sign up

Export Citation Format

Share Document