A Codon Deletion at the Beginning of Green Fluorescent Protein Genes Enhances Protein Expression

2016 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
José-Luis Rodríguez-Mejía ◽  
Abigail Roldán-Salgado ◽  
Joel Osuna ◽  
Enrique Merino ◽  
Paul Gaytán

Recombinant protein expression is one of the key issues in protein engineering and biotechnology. Among the different models for assessing protein production and structure-function studies, green fluorescent protein (GFP) is one of the preferred models because of its importance as a reporter in cellular and molecular studies. In this research we analyze the effect of codon deletions near the amino terminus of different GFP proteins on fluorescence. Our study includes Gly4 deletions in the enhanced GFP (EGFP), the red-shifted GFP and the red-shifted EGFP. The Gly4 deletion mutants and their corresponding wild-type counterparts were transcribed under the control of the T7 or Trc promoters and their expression patterns were analyzed. Different fluorescent outcomes were observed depending on the type of fluorescent gene versions. In silico analysis of the RNA secondary structures near the ribosome binding site revealed a direct relationship between their minimum free energy and GFP production. Integrative analysis of these results, including SDS-PAGE analysis, led us to conclude that the fluorescence improvement of cells expressing different versions of GFPs with Gly4 deleted is due to an enhancement of the accessibility of the ribosome binding site by reducing the stability of the RNA secondary structures at their mRNA leader regions.

2013 ◽  
Vol 95 (3) ◽  
pp. 319-329
Author(s):  
Atsushi Hirao ◽  
Tatsuo Kawarasaki ◽  
Kenjiro Konno ◽  
Satoko Enya ◽  
Masatoshi Shibata ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4105-4111 ◽  
Author(s):  
Q. Long ◽  
A. Meng ◽  
H. Wang ◽  
J.R. Jessen ◽  
M.J. Farrell ◽  
...  

In this study, DNA constructs containing the putative zebrafish promoter sequences of GATA-1, an erythroid-specific transcription factor, and the green fluorescent protein reporter gene, were microinjected into single-cell zebrafish embryos. Erythroid-specific activity of the GATA-1 promoter was observed in living embryos during early development. Fluorescent circulating blood cells were detected in microinjected embryos 24 hours after fertilization and were still present in 2-month-old fish. Germline transgenic fish obtained from the injected founders continued to express green fluorescent protein in erythroid cells in the F1 and F2 generations. The green fluorescent protein expression patterns in transgenic fish were consistent with the pattern of GATA-1 mRNA expression detected by RNA in situ hybridization. These transgenic fish have allowed us to isolate, by fluorescence-activated cell sorting, the earliest erythroid progenitor cells from developing embryos for in vitro studies. By generating transgenic fish using constructs containing other zebrafish promoters and green fluorescent protein reporter gene, it should be possible to visualize the origin and migration of any lineage-specific progenitor cells in a living embryo.


Stem Cells ◽  
2006 ◽  
Vol 25 (1) ◽  
pp. 132-138 ◽  
Author(s):  
Alexander Y. Maslov ◽  
Kimberly J. Bailey ◽  
Lawrence M. Mielnicki ◽  
Amy L. Freeland ◽  
Xiaolei Sun ◽  
...  

Biochemistry ◽  
2009 ◽  
Vol 48 (23) ◽  
pp. 5083-5089 ◽  
Author(s):  
Kristin M. Slade ◽  
Rachael Baker ◽  
Michael Chua ◽  
Nancy L. Thompson ◽  
Gary J. Pielak

Sign in / Sign up

Export Citation Format

Share Document