scholarly journals Primates Can Be a Rallying Symbol to Promote Tropical Forest Restoration

2020 ◽  
Vol 91 (6) ◽  
pp. 669-687 ◽  
Author(s):  
Colin A. Chapman ◽  
Julio Cesar Bicca-Marques ◽  
Amy E. Dunham ◽  
Pengfei Fan ◽  
Peter J. Fashing ◽  
...  

With 60% of all primate species now threatened with extinction and many species only persisting in small populations in forest fragments, conservation action is urgently needed. But what type of action? Here we argue that restoration of primate habitat will be an essential component of strategies aimed at conserving primates and preventing the extinctions that may occur before the end of the century and propose that primates can act as flagship species for restoration efforts. To do this we gathered a team of academics from around the world with experience in restoration so that we could provide examples of why primate restoration ecology is needed, outline how primates can act as flagship species for restoration efforts of tropical forest, review what little is known about how primate populations respond to restoration efforts, and make specific recommendations of the next steps needed to make restoration of primate populations successful. We set four priorities: (1) academics must effectively communicate both the value of primates and the need for restoration; (2) more research is needed on how primates contribute to forest restoration; (3) more effort must be put into Masters and PhD level training for tropical country nationals; and finally (4) more emphasis is needed to monitor the responses of regenerating forest and primate populations where restoration efforts are initiated. We are optimistic that populations of many threatened species can recover, and extinctions can be prevented, but only if concerted large-scale efforts are made soon and if these efforts include primate habitat restoration.

2010 ◽  
Vol 19 (4) ◽  
pp. 470-479 ◽  
Author(s):  
Karen D. Holl ◽  
Rakan A. Zahawi ◽  
Rebecca J. Cole ◽  
Rebecca Ostertag ◽  
Susan Cordell

Author(s):  
Katherine L. Bryant ◽  
Dirk Jan Ardesch ◽  
Lea Roumazeilles ◽  
Lianne H. Scholtens ◽  
Alexandre A. Khrapitchev ◽  
...  

AbstractLarge-scale comparative neuroscience requires data from many species and, ideally, at multiple levels of description. Here, we contribute to this endeavor by presenting diffusion and structural MRI data from eight primate species that have not or rarely been described in the literature. The selected samples from the Primate Brain Bank cover a prosimian, New and Old World monkeys, and a great ape. We present preliminary labelling of the cortical sulci and tractography of the optic radiation, dorsal part of the cingulum bundle, and dorsal parietal–frontal and ventral temporal-frontal longitudinal white matter tracts. Both dorsal and ventral association fiber systems could be observed in all samples, with the dorsal tracts occupying much less relative volume in the prosimian than in other species. We discuss the results in the context of known primate specializations and present hypotheses for further research. All data and results presented here are available online as a resource for the scientific community.


2021 ◽  
Author(s):  
Débora Cristina Rother ◽  
Igor Lopes Ferreira Sousa ◽  
Eliana Gressler ◽  
Ana Paula Liboni ◽  
Vinícius Castro Souza ◽  
...  

Author(s):  
Leland K. Werden ◽  
Karen D. Holl ◽  
Jose Miguel Chaves‐Fallas ◽  
Federico Oviedo‐Brenes ◽  
Juan Abel Rosales ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Haiyan Deng ◽  
Linlin Shen ◽  
Jiaqi Yang ◽  
Xiaoyong Mo

Background and Objectives: The stable stand structure of mixed plantations is the basis of giving full play to forest ecological function and benefit. However, the monocultural Eucalyptus plantations with large-scale and successive planting that caused ecological problems such as reduced species diversity and loss of soil nutrients have presented to be unstable and vulnerable, especially in typhoon-prone areas. The objective of this study was to evaluate the nonspatial structure difference and the stand stability of pure and mixed-Eucalyptus forests, to find out the best mixed pattern of Eucalyptus forests with the most stability in typhoon-prone areas. Materials and Methods: In this study, we randomly investigated eight plots of 30 m × 30 m in pure and mixed-Eucalyptus (Eucalyptus urophylla S. T. Blake × E. grandis W. Hill) plantations of different tree species (Neolamarckia cadamba (Roxb.) Bosser, Acacia mangium Willd., and Pinus elliottii var. Elliottii Engelm. × P. caribaea Morelet) on growth status, characterized and compared the distribution of nonspatial structure of the monoculture and mixtures, and evaluated the stand quality and stability from eight indexes of the nonspatial structure, including preservation rate, stand density, height, diameter, stem form, degree of stem inclination, tree-species composition, and age structure. Results: Eucalyptus surviving in the mixed plantation of Eucalyptus and A. mangium (EA) and in the mixed plantation of Eucalyptus and P. elliottii × P. caribaea (EP) were 5.0% and 7.6% greater than those in pure Eucalyptus plantation (EE), respectively, while only the stand preservation rate of EA was greater (+2.9%) than that of the pure Eucalyptus plantation. The proportions of all mixtures in the height class greater than 7 m were fewer than that of EE. The proportions of EA and mixed plantation of Eucalyptus and N. cadamba (EN) in the diameter class greater than 7 m were 10.6% and 7.8%, respectively, more than that of EE. EN had the highest ratio of branching visibly (41.0%), EA had the highest ratio of inclined stems (8.1%), and EP had the most straight and complete stem form (68.7%). The stand stability of the mixed plantation of Eucalyptus and A. mangium presented to be optimal, as its subordinate function value (0.76) and state value (ω = 0.61) of real stand were the largest. Conclusions: A. mangium is a superior tree species to mix with Eucalyptus for a more stable stand structure in the early growth stage to approach an evident and immense stability and resistance, which is of great significance for the forest restoration of Eucalyptus in response to extreme climate and forest management.


2017 ◽  
Vol 104 (5) ◽  
pp. 649-651 ◽  
Author(s):  
Joseph W. Veldman ◽  
Fernando A. O. Silveira ◽  
Forrest D. Fleischman ◽  
Nataly L. Ascarrunz ◽  
Giselda Durigan

2016 ◽  
Vol 381 ◽  
pp. 209-216 ◽  
Author(s):  
Tom Swinfield ◽  
Roki Afriandi ◽  
Ferry Antoni ◽  
Rhett D. Harrison

2021 ◽  
Author(s):  
Lauren Nerfa ◽  
Sarah Jane Wilson ◽  
J. Leighton Reid ◽  
Jeanine M. Rhemtulla

Sign in / Sign up

Export Citation Format

Share Document