scholarly journals Diffusion MRI data, sulcal anatomy, and tractography for eight species from the Primate Brain Bank

Author(s):  
Katherine L. Bryant ◽  
Dirk Jan Ardesch ◽  
Lea Roumazeilles ◽  
Lianne H. Scholtens ◽  
Alexandre A. Khrapitchev ◽  
...  

AbstractLarge-scale comparative neuroscience requires data from many species and, ideally, at multiple levels of description. Here, we contribute to this endeavor by presenting diffusion and structural MRI data from eight primate species that have not or rarely been described in the literature. The selected samples from the Primate Brain Bank cover a prosimian, New and Old World monkeys, and a great ape. We present preliminary labelling of the cortical sulci and tractography of the optic radiation, dorsal part of the cingulum bundle, and dorsal parietal–frontal and ventral temporal-frontal longitudinal white matter tracts. Both dorsal and ventral association fiber systems could be observed in all samples, with the dorsal tracts occupying much less relative volume in the prosimian than in other species. We discuss the results in the context of known primate specializations and present hypotheses for further research. All data and results presented here are available online as a resource for the scientific community.

2021 ◽  
Author(s):  
Benjamin C. Tendler ◽  
Taylor Hanayik ◽  
Olaf Ansorge ◽  
Sarah Bangerter-Christensen ◽  
Gregory S. Berns ◽  
...  

Post-mortem MRI provides the opportunity to acquire high-resolution datasets to investigate neuroanatomy, and validate the origins of image contrast through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), an interactive data discovery and release platform providing open access to curated, multimodal post-mortem neuroimaging datasets. Datasets span three themes - Digital Neuroanatomist: data for neuroanatomical investigations; Digital Brain Zoo: data for comparative neuroanatomy; Digital Pathologist: data for neuropathology investigations. The first Digital Brain Bank release includes fourteen distinctive whole-brain diffusion MRI datasets for structural connectivity investigations, alongside microscopy and complementary MRI modalities. This includes one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion MRI in seven non-human primate species, and one of the largest post-mortem whole-brain cohort imaging studies in neurodegeneration. Taken together, the Digital Brain Bank provides a cross-scale, cross-species investigation framework facilitating the incorporation of post-mortem data into neuroimaging studies.


2020 ◽  
Vol 91 (6) ◽  
pp. 669-687 ◽  
Author(s):  
Colin A. Chapman ◽  
Julio Cesar Bicca-Marques ◽  
Amy E. Dunham ◽  
Pengfei Fan ◽  
Peter J. Fashing ◽  
...  

With 60% of all primate species now threatened with extinction and many species only persisting in small populations in forest fragments, conservation action is urgently needed. But what type of action? Here we argue that restoration of primate habitat will be an essential component of strategies aimed at conserving primates and preventing the extinctions that may occur before the end of the century and propose that primates can act as flagship species for restoration efforts. To do this we gathered a team of academics from around the world with experience in restoration so that we could provide examples of why primate restoration ecology is needed, outline how primates can act as flagship species for restoration efforts of tropical forest, review what little is known about how primate populations respond to restoration efforts, and make specific recommendations of the next steps needed to make restoration of primate populations successful. We set four priorities: (1) academics must effectively communicate both the value of primates and the need for restoration; (2) more research is needed on how primates contribute to forest restoration; (3) more effort must be put into Masters and PhD level training for tropical country nationals; and finally (4) more emphasis is needed to monitor the responses of regenerating forest and primate populations where restoration efforts are initiated. We are optimistic that populations of many threatened species can recover, and extinctions can be prevented, but only if concerted large-scale efforts are made soon and if these efforts include primate habitat restoration.


2012 ◽  
Vol 90 (4) ◽  
pp. 489-506 ◽  
Author(s):  
J. Spit ◽  
L. Badisco ◽  
H. Verlinden ◽  
P. Van Wielendaele ◽  
S. Zels ◽  
...  

Like all heterotrophic organisms, insects require a strict control of food intake and efficient digestion of food into nutrients to maintain homeostasis and to fulfill physiological tasks. Feeding and digestion are steered by both external and internal signals that are transduced by a multitude of regulatory factors, delivered either by neurons innervating the gut or mouthparts, or by midgut endocrine cells. The present review gives an overview of peptide regulators known to control feeding and digestion in insects. We describe the discovery and functional role in these processes for insect allatoregulatory peptides, diuretic hormones, FMRFamide-related peptides, (short) neuropeptide F, proctolin, saliva production stimulating peptides, kinins, and tachykinins. These peptides control either gut myoactivity, food intake, and (or) release of digestive enzymes. Some peptides exert their action at multiple levels, possibly having a biological function that depends on their site of delivery. Many regulatory peptides have been physically extracted from different insect species. However, multiple peptidomics, proteomics, transcriptomics, and genome sequencing projects have led to increased discovery and prediction of peptide (precursor) and receptor sequences. In combination with physiological experiments, these large-scale projects have already led to important steps forward in unraveling the physiology of feeding and digestion in insects.


2019 ◽  
Vol 116 (49) ◽  
pp. 24861-24871 ◽  
Author(s):  
Michael J. Arcaro ◽  
Peter F. Schade ◽  
Margaret S. Livingstone

Topographic sensory maps are a prominent feature of the adult primate brain. Here, we asked whether topographic representations of the body are present at birth. Using functional MRI (fMRI), we find that the newborn somatomotor system, spanning frontoparietal cortex and subcortex, comprises multiple topographic representations of the body. The organization of these large-scale body maps was indistinguishable from those in older monkeys. Finer-scale differentiation of individual fingers increased over the first 2 y, suggesting that topographic representations are refined during early development. Last, we found that somatomotor representations were unchanged in 2 visually impaired monkeys who relied on touch for interacting with their environment, demonstrating that massive shifts in early sensory experience in an otherwise anatomically intact brain are insufficient for driving cross-modal plasticity. We propose that a topographic scaffolding is present at birth that both directs and constrains experience-driven modifications throughout somatosensory and motor systems.


2017 ◽  
Vol 284 (1863) ◽  
pp. 20171480 ◽  
Author(s):  
Xiao-Guang Qi ◽  
Kang Huang ◽  
Gu Fang ◽  
Cyril C. Grueter ◽  
Derek W. Dunn ◽  
...  

A small number of primate species including snub-nosed monkeys (colobines), geladas (papionins) and humans live in multilevel societies (MLSs), in which multiple one-male polygamous units (OMUs) coexist to form a band, and non-breeding males associate in bachelor groups. Phylogenetic reconstructions indicate that the papionin MLS appears to have evolved through internal fissioning of large mixed-sex groups, whereas the colobine MLS evolved through the aggregation of small, isolated OMUs. However, how agonistic males maintain tolerance under intensive competition over limited breeding opportunities remains unclear. Using a combination of behavioural analysis, satellite telemetry and genetic data, we quantified the social network of males in a bachelor group of golden snub-nosed monkeys. The results show a strong effect of kinship on social bonds among bachelors. Their interactions ranged from cooperation to agonism, and were regulated by access to mating partners. We suggest that an ‘arms race’ between breeding males' collective defence against usurpation attempts by bachelor males and bachelor males' aggregative offence to obtain reproductive opportunities has selected for larger group size on both sides. The results provide insight into the role that kin selection plays in shaping inter-male cohesion which facilities the evolution of multilevel societies. These findings have implications for understanding human social evolution, as male–male bonds are a hallmark of small- and large-scale human societies.


2018 ◽  
Vol 29 (05) ◽  
pp. 1840007
Author(s):  
Huijun Wu ◽  
Hao Wang ◽  
Linyuan Lü

Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power–law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.


2020 ◽  
Author(s):  
Zeyu Jiao ◽  
Yinglei Lai ◽  
Jujiao Kang ◽  
Weikang Gong ◽  
Liang Ma ◽  
...  

AbstractHigh-throughput technologies, such as magnetic resonance imaging (MRI) and DNA/RNA sequencing (DNA-seq/RNA-seq), have been increasingly used in large-scale association studies. With these technologies, important biomedical research findings have been generated. The reproducibility of these findings, especially from structural MRI (sMRI) and functional MRI (fMRI) association studies, has recently been questioned. There is an urgent demand for a reliable overall reproducibility assessment for large-scale high-throughput association studies. It is also desirable to understand the relationship between study reproducibility and sample size in an experimental design. In this study, we developed a novel approach: the mixture model reproducibility index (M2RI) for assessing study reproducibility of large-scale association studies. With M2RI, we performed study reproducibility analysis for several recent large sMRI/fMRI data sets. The advantages of our approach were clearly demonstrated, and the sample size requirements for different phenotypes were also clearly demonstrated, especially when compared to the Dice coefficient (DC). We applied M2RI to compare two MRI or RNA sequencing data sets. The reproducibility assessment results were consistent with our expectations. In summary, M2RI is a novel and useful approach for assessing study reproducibility, calculating sample sizes and evaluating the similarity between two closely related studies.


Author(s):  
Sofie L. Valk ◽  
Ting Xu ◽  
Daniel S. Margulies ◽  
Shahrzad Kahrabian Masouleh ◽  
Casey Paquola ◽  
...  

AbstractStructural and functional characteristics of the cortex systematically vary along global axes as a function of cytoarchitecture, gene expression, and connectivity. The topology of the cerebral cortex has been proposed to be a prerequisite for the emergence of human cognition and explain both the impact and progression of pathology. However, the neurogenetic origin of these organizational axes in humans remains incompletely understood. To address this gap in the literature our current study assessed macro scale cortical organization through an unsupervised machine learning analysis of cortical thickness covariance patterns and used converging methods to evaluate its genetic basis. In a large-scale sample of twins (n=899) we found structural covariance of thickness to be organized along both an anterior-to-posterior and inferior-to-superior axis. We found that both axes showed a high degree of correspondence in pairs of identical twins, suggesting a strong heritable component in humans. Furthermore, comparing these dimensions in macaques and humans highlighted similar organizational principles in both species demonstrating that these axes of cortical organization are phylogenetically conserved within primate species. Finally, we found that in both humans and macaques the inferior-superior dimension of cortical organization was aligned with the predictions of the dual-origin theory, highlighting the possibility that the macroscale organization of primate brain structure is subject to multiple distinct neurodevelopmental trajectories. Together, our study establishes the genetic basis of natural axes in the cerebral cortex along which structure is organized and so provides important insights into the organization of human cognition that will inform both our understanding of how structure guides function and for the progression of pathology in diseases.


Sign in / Sign up

Export Citation Format

Share Document