scholarly journals WiFi-Friendly Building to Enable WiFi Signal Indoor

2018 ◽  
Vol 7 (2) ◽  
pp. 264-271 ◽  
Author(s):  
Suherman Suherman

The 802.11 networks (wireless fidelity (WiFi) networks) have been the main wireless internet access infrastructure within houses and buildings. Besides access point placement, building architectures contribute to the WiFi signal spreading. Even dough WiFi installation in buildings becomes prevalent; the building architectures still do not take WiFi-friendliness into considerations. Current research on building and WiFi are on access point location, location based service and home automation. In fact, the more friendly the building to WiFi signal, the more efficient the 802.11 based wireless infrastructure. This paper introduces the term of WiFi-friendly building by considering signal propagations, the obstacle impact, as well as proposing an ornament-attaced reflector and a hole-in-the-wall structure to improve WiFi signal distribution. Experiment results show that obstacle materials made of concrete reducing WiFi signal the most, followed by metal and wood. Reflecting materials are able to improve the received signal level, for instance, the implemented ornament-attached reflector is able improving the received signal up to 6.56 dBm. Further, the hole-in-the-wall structure is successfully increasing WiFi signal up to 2.3 dBm.

2020 ◽  
Vol 2 (1) ◽  
pp. 23-32
Author(s):  
Winda Wulandari ◽  
Ari Muzakir

Information technology in the field of transmission that is currently developing, one of which is Wi-Fi. Wi-Fi devices provide user convenience in carrying out their activities. The quality of Wi-Fi network performance can be known by the reception of the signal received by the user. If the placement of an access point (AP) is done correctly, the network will be optimized. There are several propagation models in the room that can be used as a guideline in determining the placement of the AP, one slope model is a way to measure the average level of a building and only depends on the distance of the transmitter and receiver. This research was conducted in order to overcome the problem of Wi-Fi network area coverage at the Office of Communication and Information of the City of Palembang. This study conducted an experiment to change the layout of AP's placement, measure and calculate data in priority with the one slope model. The results of measurements and calculations carried out analysis and comparison in order to determine the results of the experiments conducted. The results of this study indicate that an attempt to change the AP layout with one slope model can overcome existing problems and get better Wi-Fi coverage area performance. In the calculation with the one slope model of the 2-trial access point placement results in a decrease and an increase in signal. The signal reduction occurred in experiment 1, whereas in experiment 2 (design 2) the signal increased by 1.46dBm.


2020 ◽  
Vol 10 (2) ◽  
pp. 103
Author(s):  
Fransiska Sisilia Mukti

<p class="JGI-AbstractIsi">This study provides an overview of signal distribution pattern using Cost-231 Multi-Wall (MWM) propagation model. The signal distribution pattern is used as a reference in projecting indoor Access Points (AP) placement in Malang Institute of Asia. The MWM approach estimates the actual radio wave propagation value for measurements are made by considering obstacles between APs and user devices. The study recommends 10 optimal points of AP placement for the 1st, 3rd and 4th-floors, and 7 optimal points for the 2nd-floor. Determination of these placement points was based on the estimated signal strength obtained by users, at -50dBM up to - 10dBm, which is the range for good and excellent signal category.</p>


2020 ◽  
Vol 10 (2) ◽  
pp. 103-112
Author(s):  
Fransiska Sisilia Mukti

This study provides an overview of signal distribution pattern using Cost-231 Multi-Wall (MWM) propagation model. The signal distribution pattern is used as a reference in projecting indoor Access Points (AP) placement in Malang Institute of Asia. The MWM approach estimates the actual radio wave propagation value for measurements are made by considering obstacles between APs and user devices. The study recommends 10 optimal points of AP placement for the 1st, 3rd and 4th-floors, and 7 optimal points for the 2nd-floor. Determination of these placement points was based on the estimated signal strength obtained by users, at -50dBM up to - 10dBm, which is the range for good and excellent signal category.


Sign in / Sign up

Export Citation Format

Share Document