scholarly journals Evaluations of internet of things-based personal smart farming system for residential apartments

2020 ◽  
Vol 9 (6) ◽  
pp. 2477-2483
Author(s):  
Fatin Natasya Shuhaimi ◽  
Nursuriati Jamil ◽  
Raseeda Hamzah

Urban farming is popularly accepted by communities living in cities as they are more health-conscious and to help support the high cost of living. Unfortunately, farming takes a considerable amount of time specially to monitor the plant’s growth. Therefore, smart farming using Internet of Things (IoT) should be adopted to realize urban farming. In this study, two IoT-based smart farming system designs for personal usages in a residential apartment were proposed and evaluated. As the design was meant for beginners, two utmost parameters for maintaining plant growth was evaluated, that are humidity and temperature. The humidity and temperature readings of design A using DHT 11 sensor and design B using DHT 22 sensor were recorded for 3 days and were compared against the actual humidity and temperature of the environment. After comparing the sum of absolute difference (SAD) of both designs, the implementation costs, and the consumption power, there is an inconclusive finding in terms of accuracy and costs. However, the basic design and cost of implementing a personal IoT-based smart farming system were proposed. The factors to be considered in constructing a personal smart farming system were also described.

Fig plants are gaining popularity among farmers across Malaysia, mainly influenced by the high demands for fresh fig fruits and a fairly higher market price for the fruit. Current practices in farm fields are still based on observation and scheduling approach without any quantitative approaches which provide a precise way of determining the crucial elements such as irrigation and fertilization needs. This paper explains the design and development of smart farming system with sensing technology deployment for precision agriculture and the Internet of Things (IoT) approach to get farmers connected to their farm. Raspberry Pi 3 Model B acts as a brain of the entire system, delivering its functionality in performing monitoring and controlling tasks. Database is implemented by using ThingSpeak IoT cloud platform while for mobile application, this project is using Swift 4 programming language within Xcode IDE in implementing the iOS user interface features. The evaluation and validation result shows the microcontrollers and all embedded sensors associated to them are successfully executing their tasks in performing the surrounding humidity, irrigation and fertilization control duties. The developed system also capable in tracing the surrounding temperature and humidity, soil humidity and pH, and fertilizer EC value changes. Assistance in mobile device application implementation and ThingSpeak cloud database deployment in this project also get the farmers connected to their farm. Although this project has been completed successfully, however there are several areas which can be further improved in order to make the entire system more efficient and useful to the user.


Author(s):  
K. Vikranth ◽  
Krishna Prasad K.

India is a country that depends on agriculture, where about half the population relies heavily on agriculture for their livelihood. However, most of the practices undertaken in the agricultural process are not for profit and yield favorable. It should upgrade with current technologies to boost seed quality, check soil infertility, check the water level, environmental changes, and market price prediction, and achieve in agriculture sensitivity of faults and background understanding. The advancement in technology and developments is seen as a significant aspect in their financial development and agricultural production growth. The Internet of Things (IoT), Wireless Sensor Networks (WSN), and data analytics accomplish these upgrades. These technologies help in providing solutions to agricultural issues such as resource optimization, agricultural land monitoring, and decision-making support, awareness of the crop, land, weather, and market conditions for farmers. Smart agriculture is based on data from sensors, data from cloud platform storage and data from databases, all three concepts need to be implemented. The data are collected from different sensors and stored in a cloud-based back end support, which is then analyzed using proper analytics techniques, and then the relevant information is transferred to a user interface, which naturally supported the decision to conclude. The IoT applications mainly use sensors to monitor the situation, which collects a large size of data every time, so in the case of the Internet of Things (IoT) application, sensors contribute more. Data analytics requires data storage, data aggregation, data processing and data extraction. To retrieve data and information from database, we must use data mining techniques. It acts a significant position in the selection-making process on several agricultural issues. The eventual objective of data mining is to acquire information form data transform it for some advanced use into a unique human-comprehensible format. Big data's role in Agriculture affords prospect to increase the farmers' economic gain by undergoing a digital revolution in this aspect that we examine with precision. This paper includes reviewing a summary of some of the conference papers, journals, and books that have been going in favor of smart agriculture. The type of data required for smart farming system are analyzed and the architecture and schematic diagram of a proposed intelligent farming system are included. It also involves implementing different components of the smart farming system and integrating IoT and data analytics in the smart farming system. Based on the review, research gap, research agendas to carry out further research are identified.


Author(s):  
Dr. M. Prasad

This paper presents the growth of plants effectively in less duration of time compared to traditional farming. In this the farming is done inside the packed electronic environment by using the artificial environment through Led’s for growth of plants. The photosynthesis process is carried out by the plants is dependent on the led’s. In this project we are using two sensors they are DHT11 which is used to monitor the temperature and humidity parameters and MQ135 which is an air quality sensor for monitoring the environment of the particular region and controlled using Node MCU. All the equipments are monitored using Iot. If any of these parameters is in abnormal condition then exhaust fan get turned on, so that we can reduce the humidity. Blynk application is used for displaying information. By using these parameters the rate of plant growth is doubled. Results shown that when all the factors of plant growth are stabilized, then it is possible to grow a plant in less time compared through normal plant time because photosynthesis is carries throughout the day.


Author(s):  
Nikunj Rajyaguru ◽  
Shubhendu Vyas ◽  
Kunjan Vyas

Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 370-380
Author(s):  
Dewi Purnama Sari

Belakangan ini penerapan Internet of Things (IoT) banyak dimanfaatkan pada bidang pertanian dan perkebunan. Pada bidang pertanian dan perkebunan, permasalahan tumbuh kembang tumbuhan merupakan permasalahan yang penting karena sangat bergantung pada faktor abiotik (fisik) dan biotik (biologis). Faktor abiotik (faktor lingkungan fisik) antara lain seperti suhu, kelembaban (udara dan tanah), pencahayaan, kecepatan angin, media tanam dan pupuk sangat mempengaruhi tumbuh kembang tumbuhan dan seringkali sulit terpantau. Agar tumbuh kembang tanaman dapat baik, maka perlu dipantau secara terus menerus faktor abiotik maupun biotik pada lingkungan tempat tumbuhnya tanaman. Tujuan diterapkan IoT dalam bidang pertanian agar dapat mengotomatisasi semua aspek pertanian dan metode pertanian untuk membuat proses lebih efisien dan efektif. Dalam penelitian ini dibuat sebuah prototipe untuk memantau suhu, kelembaban udara dan tanah serta kecepatan angin pada lahan pertanian dengan memanfaatkan komunikasi LoRa sebagai perangkat pendukung IoT dalam penerapan smart farming dengan keunggulannya menggunakan daya listrik yang bersumber dari energi matahari. Di sini data akan ditampilkan pada sebuah platform Cayenne sebagai user interface untuk dilakukan pemantauan dari jarak jauh. Dengan demikian pengguna dapat secara langsung memantau faktor abiotik (faktor fisik lingkungan) dari tempat tumbuh kembangnya tanaman. Dari pemantauan dapat dilakukan tindakan-tindakan yang diperlukan agar tanaman dapat tumbuh kembang dengan baik.


2021 ◽  
pp. 337-369
Author(s):  
R. Anandan ◽  
B.S. Deepak ◽  
G. Suseendran ◽  
Noor Zaman Jhanjhi

Sign in / Sign up

Export Citation Format

Share Document