scholarly journals A SIMSCAPE based design of a dual maximum power point tracker of a stand-alone photovoltaic system

Author(s):  
Mohammed S. Ibbini ◽  
Abdullah H. Adawi

This paper presents the simulation of a dual maximum power point tracker (dual-MPPT) and attempt to get the global maximum power point GMPP under partial shading conditions for a solar photovoltaic module using MATLAB SIMSCAPE. Traditional single MPP trackers are less efficient than dual MPP trackers and have greater sensitivity to partial shading. By using dual MPP trackers, one can get several features such as the possibility of connecting two arrays with different string sizes or different solar azimuths or tilts within high efficiency. This paper focuses on making the photovoltaic system work at maximum possible power under partial shading condition by using dual MPP trackers to achieve the convergence toward the global maximum power point GMPP.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4775
Author(s):  
Kuei-Hsiang Chao ◽  
Yu-Ju Lai

In this study, a maximum power point tracker was developed for photovoltaic module arrays by using a teacher-learning-based optimization (TLBO) algorithm to control the photovoltaic system. When a photovoltaic module array is shaded, a conventional maximum power point tracker may obtain the local maximum power point rather than the global maximum power point. The tracker developed in this study was aimed at solving this problem. To prove the viability of the proposed method, a SANYO HIP 2717 photovoltaic module with diverse connection patterns and shading ratios was used. Thus, single-peak, double-peak, triple-peak, and multi-peak power–voltage characteristic curves of the photovoltaic module array were obtained. A simulation of maximum power point tracking (MPPT) was then performed with MATLAB software. With regard to practical testing, a boost converter was used as the hardware structure of the maximum power point tracker and a TMS320F2808 digital signal processor was selected to execute the rules for MPPT. The results of the practical tests verified that the proposed improved TLBO algorithm had a superior accuracy to existing TLBO algorithms. In addition, the proposed improved TLBO algorithm can shorten the tracking time to 1/2 or 1/4, so it can improve the efficiency of power generation by two to three percentage.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 327 ◽  
Author(s):  
Muhammad Afzal Awan ◽  
Tahir Mahmood

Optimal energy extraction under partial shading conditions from a photovoltaic (PV) array is particularly challenging. Conventional techniques fail to achieve the global maximum power point (GMPP) under such conditions, while soft computing techniques have provided better results. The main contribution of this paper is to devise an algorithm to track the GMPP accurately and efficiently. For this purpose, a ten check (TC) algorithm was proposed. The effectiveness of this algorithm was tested with different shading patterns. Results were compared with the top conventional algorithm perturb and observe (P&O) and the best soft computing technique flower pollination algorithm (FPA). It was found that the proposed algorithm outperformed them. Analysis demonstrated that the devised algorithm achieved the GMPP efficiently and accurately as compared to the P&O and the FPA algorithms. Simulations were performed in MATLAB/Simulink.


Author(s):  
Muhammad Mateen Afzal Awan ◽  
Tahir Mahmood

Modern-day world is facing problems such as, electricity generation deficiency, mounting energy demand, GHG (Greenhouse Gas) emissions, reliability and soaring prices. To resolve these issues, sustainable and renewable energy resources like SPV (Solar Photovoltaic) would be quite helpful. In this regard, the extraction of maximum power from SPV array in PSC (Partial Shading Weather Conditions) remains a challenge. Creation of multiple power peaks in the P-V (Power-Voltage) curve of a PV array due to partial shading, makes it difficult to track GMPP (Global Maximum Power Point) out of multiple power peaks known as LMPP (Local Maximum Power Points). Conventional algorithms are not able to perform in any condition other than UWC (Uniform Weather Condition). Nature inspired SC (Soft Computing) algorithms efficiently track the GMPP in PSC. The top performing SC algorithm named, FPA (Flower Pollination Algorithm) presents an efficient solution for GMPP tracking in PSCs. In this paper, the efficiency, accuracy and tracking speed of FPA algorithm is optimized. Comparison of the proposed OFPA (Optimized Flower Pollination Algorithm) and the existing FPAs is performed for zero shading condition, weak PSC, strong PSC, and changing weather conditions. In zero shading conditions, improvement of 0.7% in efficiency and 33% in tracking speed is achieved. In weak shading conditions, improvement of 0.97% in efficiency and 32.2% in tracking speed is achieved. In strong shading conditions, improvement of 0.24% in efficiency and 30.6% in tracking speed is achieved. OFPA is also tested for changing weather conditions (entering from Case-1 to Cae-3) and it retains its outstanding performance in the changing weather conditions. Simulations are performed in MATLAB/Simulink.


2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Hafiz Muhammad Tayyab ◽  
Yaqoob Javed ◽  
Irfan Ullah ◽  
Abid Ali Dogar ◽  
Burhan Ahmed

A major problem in the photovoltaic (PV) system is to determine the maximum power point (MPP) and to overcome the limitations of environmental change. To resolve the limitation of different techniques with high convergence rate and less fluctuations, a hybrid model of fractional open circuit voltage is proposed. For partial shading, incremental conductance is used. The proposed technique is extremely useful, provides high efficiency, and takes less time to achieve the MPP. The tenacity of the proposed method has been checked using MATLAB/Simulink, which clearly shows that the proposed technique has high efficiency compared to other MPP tracking methods.


Author(s):  
Salmi Hassan ◽  
Badri Abdelmajid ◽  
Zegrari Mourad ◽  
Sahel Aicha ◽  
Baghdad Abdenaceur

<p>Maximum power point tracking (MPPT) algorithms are employed in photovoltaic (PV) systems to make full utilization of PV array output power, which have a complex relationship between ambient temperature and solar irradiation. The power-voltage characteristic of PV array operating under partial shading conditions (PSC) exhibits multiple local maximum power points (LMPP). In this paper, an advanced algorithm has been presented to track the global maximum power point (GMPP) of PV. Compared with the Perturb and Observe (P&amp;O) techniques, the algorithm proposed the advantages of determining the location of GMPP whether partial shading is present.</p>


Sign in / Sign up

Export Citation Format

Share Document