scholarly journals On solving fuzzy delay differential equation using bezier curves

Author(s):  
Ali F. Jameel ◽  
Sardar G. Amen ◽  
Azizan Saaban ◽  
Noraziah H. Man

In this article, we plan to use Bezier curves method to solve linear fuzzy delay differential equations. A Bezier curves method is presented and modified to solve fuzzy delay problems taking the advantages of the fuzzy set theory properties. The approximate solution with different degrees is compared to the exact solution to confirm that the linear fuzzy delay differential equations process is accurate and efficient. Numerical example is explained and analyzed involved first order linear fuzzy delay differential equations to demonstrate these proper features of this proposed problem.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


2014 ◽  
Vol 30 (3) ◽  
pp. 293-300
Author(s):  
J. DZURINA ◽  
◽  
B. BACULIKOVA ◽  

In the paper we offer oscillation criteria for even-order neutral differential equations, where z(t) = x(t) + p(t)x(τ(t)). Establishing a generalization of Philos and Staikos lemma, we introduce new comparison principles for reducing the examination of the properties of the higher order differential equation onto oscillation of the first order delay differential equations. The results obtained are easily verifiable.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Ridwanulahi I Abdulganiy ◽  
Olusheye A Akinfenwa ◽  
Osaretin E Enobabor ◽  
Blessing I Orji ◽  
Solomon A Okunuga

A family of Simpson Block Method (SBM) is proposed for the numerical integration of Delay Differential Equations (DDEs). The methods are developed through multistep collocation technique using constant step width. The convergence and accuracy of the methods are established through some standard DDEs in the reviewed literature. Keywords— Block Method, Collocation Technique, Delay Term, Delay Differential Equation, Self Starting.   


1998 ◽  
Vol 41 (2) ◽  
pp. 207-213 ◽  
Author(s):  
CH. G. Philos ◽  
Y. G. Sficas

AbstractA new oscillation criterion is given for the delay differential equation , where and the function T defined by is increasing and such that . This criterion concerns the case where .


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1178-1184
Author(s):  
Shanti S Kandala ◽  
Surya Samukham ◽  
Thomas K Uchida ◽  
C. P. Vyasarayani

The dynamics of time-delay systems are governed by delay differential equations, which are infinite dimensional and can pose computational challenges. Several methods have been proposed for studying the stability characteristics of delay differential equations. One such method employs Galerkin approximations to convert delay differential equations into partial differential equations with boundary conditions; the partial differential equations are then converted into systems of ordinary differential equations, whereupon standard ordinary differential equation methods can be applied. The Galerkin approximation method can be applied to a second-order delay differential equation in two ways: either by converting into a second-order partial differential equation and then into a system of second-order ordinary differential equations (the “second-order Galerkin” method) or by first expressing as two first-order delay differential equations and converting into a system of first-order partial differential equations and then into a first-order ordinary differential equation system (the “first-order Galerkin” method). In this paper, we demonstrate that these subtly different formulation procedures lead to different roots of the characteristic polynomial. In particular, the second-order Galerkin method produces spurious roots near the origin, which must then be identified through substitution into the characteristic polynomial of the original delay differential equation. However, spurious roots do not arise if the first-order Galerkin method is used, which can reduce computation time and simplify stability analyses. We describe these two formulation strategies and present numerical examples to highlight their important differences.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fatima N. Ahmed ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din ◽  
Mohd Salmi Md Noorani

We study the oscillatory behaviour of all solutions of first-order neutral equations with variable coefficients. The obtained results extend and improve some of the well-known results in the literature. Some examples are given to show the evidence of our new results.


2004 ◽  
Vol 1 (2) ◽  
pp. 347-349 ◽  
Author(s):  
Baghdad Science Journal

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.


2007 ◽  
Vol 4 (3) ◽  
pp. 485-490
Author(s):  
Baghdad Science Journal

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document