scholarly journals Online multiclass EEG feature extraction and recognition using modified convolutional neural network method

Author(s):  
Haider Abdulkarim ◽  
Mohammed Z. Al-Faiz

<p>Many techniques have been introduced to improve both brain-computer interface (BCI) steps: feature extraction and classification. One of the emerging trends in this field is the implementation of deep learning algorithms. There is a limited number of studies that investigated the application of deep learning techniques in electroencephalography (EEG) feature extraction and classification. This work is intended to apply deep learning for both stages: feature extraction and classification. This paper proposes a modified convolutional neural network (CNN) feature extractorclassifier algorithm to recognize four different EEG motor imagery (MI). In addition, a four-class linear discriminant analysis (LDR) classifier model was built and compared to the proposed CNN model. The paper showed very good results with 92.8% accuracy for one EEG four-class MI set and 85.7% for another set. The results showed that the proposed CNN model outperforms multi-class linear discriminant analysis with an accuracy increase of 28.6% and 17.9% for both MI sets, respectively. Moreover, it has been shown that majority voting for five repetitions introduced an accuracy advantage of 15% and 17.2% for both EEG sets, compared with single trials. This confirms that increasing the number of trials for the same MI gesture improves the recognition accuracy</p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


Author(s):  
Chih-Ta Yen ◽  
Jia-De Lin

This study employed wearable inertial sensors integrated with an activity-recognition algorithm to recognize six types of daily activities performed by humans, namely walking, ascending stairs, descending stairs, sitting, standing, and lying. The sensor system consisted of a microcontroller, a three-axis accelerometer, and a three-axis gyro; the algorithm involved collecting and normalizing the activity signals. To simplify the calculation process and to maximize the recognition accuracy, the data were preprocessed through linear discriminant analysis; this reduced their dimensionality and captured their features, thereby reducing the feature space of the accelerometer and gyro signals; they were then verified through the use of six classification algorithms. The new contribution is that after feature extraction, data classification results indicated that an artificial neural network was the most stable and effective of the six algorithms. In the experiment, 20 participants equipped the wearable sensors on their waists to record the aforementioned six types of daily activities and to verify the effectiveness of the sensors. According to the cross-validation results, the combination of linear discriminant analysis and an artificial neural network was the most stable classification algorithm for data generalization; its activity-recognition accuracy was 87.37% on the training data and 80.96% on the test data.


Author(s):  
David Zhang ◽  
Fengxi Song ◽  
Yong Xu ◽  
Zhizhen Liang

This chapter is a brief introduction to biometric discriminant analysis technologies — Section I of the book. Section 2.1 describes two kinds of linear discriminant analysis (LDA) approaches: classification-oriented LDA and feature extraction-oriented LDA. Section 2.2 discusses LDA for solving the small sample size (SSS) pattern recognition problems. Section 2.3 shows the organization of Section I.


Sign in / Sign up

Export Citation Format

Share Document