HASBE access control model with Secure Key Distribution and Efficient Domain Hierarchy for cloud computing

Author(s):  
RajaniKanth Aluvalu ◽  
Vanraj Kamliya ◽  
Lakshmi Muddana

Cloud computing refers to the application and service that run on a distributed system using virtualized resources and access by common internet protocol and networking standard. Cloud computing virtualizes system by pooling and sharing resources. System and resources can be monitored from central infrastructure as needed. It requires high security because now day’s companies are placing more essential and huge amount of data on cloud. Hence traditional access control models are not sufficient for cloud computing applications. So encryption based on Attribute (“ABE”-“Attribute based encryption”) has been offered for access control of subcontracted data in cloud computing with complex access control policies. Traditional HASBE provides Flexibility, scalability and fine-grained access control but does not support hierarchical domain structure. In this paper, we had enhanced “Hierarchical attribute-set-based encryption” (“HASBE”) access control with a hierarchical assembly of users, with flexible domain Hierarchy structure and Secure key distribution with predefined policy

Author(s):  
RajaniKanth Aluvalu ◽  
Vanraj Kamliya ◽  
Lakshmi Muddana

Cloud computing refers to the application and service that run on a distributed system using virtualized resources and access by common internet protocol and networking standard. Cloud computing virtualizes system by pooling and sharing resources. System and resources can be monitored from central infrastructure as needed. It requires high security because now day’s companies are placing more essential and huge amount of data on cloud. Hence traditional access control models are not sufficient for cloud computing applications. So encryption based on Attribute (“ABE”-“Attribute based encryption”) has been offered for access control of subcontracted data in cloud computing with complex access control policies. Traditional HASBE provides Flexibility, scalability and fine-grained access control but does not support hierarchical domain structure. In this paper, we had enhanced “Hierarchical attribute-set-based encryption” (“HASBE”) access control with a hierarchical assembly of users, with flexible domain Hierarchy structure and Secure key distribution with predefined policy


2014 ◽  
Vol 556-562 ◽  
pp. 5888-5892
Author(s):  
An Ping Xiong ◽  
Xin Xin He

The attribute-based encryption scheme of cloud storage application environment helps achieve a flexible access control and confidentiality of the data. However, at present efficient and fine-grained access control can not be achieved. This is caused by the heavy re-encryption workload of data owner while attribute revocation. Besides, there is no solution to revoke user directly. By introducing key segmentation and proxy re-encryption technology to encrypt the part of the heavy work to the cloud service provider to perform, the new scheme greatly reduces the computational cost of data owner. In addition, a special attribute which the data owner controls independently is added to construct different attribute domains of CP-ABE so that the data owner can completely control of the user permissions. The new scheme not only can support multiple threshold fine access control policies, but also can achieve cancellation directly to the user as well as to the user attribute. Experimental results show that the new scheme is superior to the general scheme, achieve highly efficient, fine, and flexible access control.


2014 ◽  
Vol 513-517 ◽  
pp. 2273-2276
Author(s):  
Shao Min Zhang ◽  
Jun Ran ◽  
Bao Yi Wang

Ciphertext-Policy Attribute-based encryption (CP-ABE) mechanism is an extension of attribute-based encryption which associates the ciphertext and user's private key with the attribute by taking the attribute as a public key. It makes the representation of the access control policy more flexible, thus greatly reduces the network bandwidth and processing overhead of sending node brought by fine-grained access control of data sharing. According to the principle of CP-ABE encryption mechanism for this mechanism, an improved cloud computing-based encryption algorithm was proposed in this paper to overcome the deficiencies of permission changing process under the massive data. Experimental results show that compared with traditional methods, the new mechanism significantly reduces time-consuming.


Author(s):  
Lokesh B. Bhajantri ◽  
Tabassum N. Mujawar

Cloud computing is the most prevailing paradigm, which provides computing resources and services over the Internet. Due to immense development in services provided by cloud computing, the trend to share large-scale and confidential data on cloud has been increased. Though cloud computing provides many benefits, ensuring security of the data stored in cloud is the biggest challenge. The security concern about the data becomes main barrier for adoption of cloud. One of the important security aspects is fine grained access control mechanism. The most widely used and efficient access control scheme for cloud computing is Attribute Based Encryption (ABE). The Attribute Based Encryption (ABE) scheme provides a new technique for embedding access policies cryptographically into encryption process. The article presents an overview of various existing attribute-based encryption schemes and traditional access control models. Also, the comparison of existing ABE schemes for cloud computing, on basis of various criteria is presented in the article.


Author(s):  
Mikel Uriarte Itzazelaia ◽  
Jasone Astorga ◽  
Eduardo Jacob ◽  
Maider Huarte

Upcoming smart scenarios enabled by the Internetof Things (IoT) envision smart objects that exposeservices that can adapt to user behaviour or be managedfor higher productivity. In such environments, smart thingsare cheap and, therefore, constrained devices. However, theyare also critical components because of the importance ofthe information they provide. Therefore, strong securityis a must, but not all access control models are feasible.In this paper, we propose the feasibility assessment of anaccess control model that deals with a hybrid architectureand a policy language that provides dynamic fine-grainedpolicy enforcement in the sensors, which requires an efficientmessage exchange protocol called Hidra. This experimentalperformance assessment conveys a prototype implementation,a performance evaluation model, the measurements and therelated discussions, which demonstrate the feasibility andadequacy of the analysed access control model.


2016 ◽  
Vol 15 (8) ◽  
pp. 6999-7007
Author(s):  
Paolina Centonze

In the medical industry, it is critical to ensure the confidentiality of patients’ personal health records when storing and managing them. Before cloud computing surfaced, heath providers used local servers and hard drives to store their records and data. As cloud computing has been becoming more prominent many healthcare providers are using the cloud to store and manage their sensitive data. This journal compares and investigates two different access control models, in particular Role-Based Access Control and Attribute-Based Access Control, to validate the confidentiality of data when storing and managing personal health records on cloud services. The comparative analysis of these access control models is done to identify possible inefficiency and privacy restrictions in these two access control based models. In addition, in this journal we propose a new access control model, which we refer to as Role-Attribute-Based-Encryption Access Control (RABE), by combining some of the best aspects of both RBAC and ABAC in order to improve data privacy on cloud systems used in healthcare.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pengshou Xie ◽  
Haoxuan Yang ◽  
Liangxuan Wang ◽  
Shuai Wang ◽  
Tao Feng ◽  
...  

The communication process of devices in IoV under cloud architecture needs to be protected by access control models. However, existing access control models have difficulty establishing the appropriate granularity of permissions in the face of large amounts of data in IoV. Moreover, the access control model may need to temporarily change user privileges to accommodate the dynamic nature of IoV scenarios, a requirement that is difficult to implement for traditional access control models. The unstable connection status of devices in IoV also creates problems for access control. The service (composed of role and attribute) based access control model (in IoV) S-RABAC (V), under the Cloud computing architecture, introduces a formal theoretical model. The model uses attribute grouping and prioritization mechanisms to form a hierarchical structure. The permission combination pattern in the hierarchical structure can avoid duplicate permissions and reduce the number of permissions while ensuring fine-grained permissions. Different layers in the model have different priorities, and when a user’s permission requires temporary changes, it can be adjusted to the corresponding layers according to the user’s priority. In addition, users are allowed to keep their assigned privileges for a period to avoid frequent access control because of unstable connections. We have implemented the proposed access control model in Alibaba Cloud Computing and given six example demonstrations. The experiment shows that this is an access control model that can protect IoV security more effectively. Various unique mechanisms in the model enable S-RABAC(V) to improve the overall access control efficiency. The model adds some extra features compared to ABAC and RBAC and can generate more access control decisions using the priority mechanism.


Author(s):  
Lokesh B. Bhajantri ◽  
Tabassum N. Mujawar

Cloud computing is the most prevailing paradigm, which provides computing resources and services over the Internet. Due to immense development in services provided by cloud computing, the trend to share large-scale and confidential data on cloud has been increased. Though cloud computing provides many benefits, ensuring security of the data stored in cloud is the biggest challenge. The security concern about the data becomes main barrier for adoption of cloud. One of the important security aspects is fine grained access control mechanism. The most widely used and efficient access control scheme for cloud computing is Attribute Based Encryption (ABE). The Attribute Based Encryption (ABE) scheme provides a new technique for embedding access policies cryptographically into encryption process. The article presents an overview of various existing attribute-based encryption schemes and traditional access control models. Also, the comparison of existing ABE schemes for cloud computing, on basis of various criteria is presented in the article.


Sign in / Sign up

Export Citation Format

Share Document