Preparation and Photovoltaic Properties of Flexible Dye-Sensitized Solar Cells

2011 ◽  
Vol 306-307 ◽  
pp. 112-115 ◽  
Author(s):  
You Zeng ◽  
Li Jia Zhao ◽  
Ying Zhen ◽  
Fang Xiao Shi ◽  
Yu Tong

Flexible dye-sensitized solar cells (DSCs) were prepared by using carbon nanotube transparent conductive films (CNT-TCFs) as flexible substrates, and their photovoltaic properties were investigated as well. The flexible DSCs show typical photovoltaic characteristics with short-circuit current of 0.78 μA and open-circuit voltage of 1.48 mV, which was strongly influenced by heat-treatment temperature, type of dyes, and electrical resistivity. In light of their lighter weight and higher flexibility than conventional DSCs based on conductive glass substrates, the flexible DSCs have great potential as functional photoelectric components in many fields.

2013 ◽  
Vol 448-453 ◽  
pp. 1452-1456
Author(s):  
Jiang Biao Feng ◽  
Ling Jun Hua ◽  
Feng Jun Shan ◽  
Zhi Gang Yan ◽  
Guo Chao Qi

Diatomite/TiO2 composite films were prepared with diatomite and P25 TiO2 nanoparticles on conductive glass substrates. The surface morphology and phase composition of the film were characterized with scanning electron microscopy (SEM) and X ray diffraction (XRD). It is concluded that diatomite doped into the film will form granular cores. Dye sensitized solar cells (DSSC) were fabricated with the diatomite/TiO2 composite film as anode, and the photoelectric properties of the cells were tested. Results show that the doping of diatomite can significantly increase the open circuit voltage and short circuit current of DSSC. Optimized photoelectric properties can be acquired as 1.3 percent diatomite doped in TiO2 film.


BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4181 ◽  
Author(s):  
Mariia Karpacheva ◽  
Vanessa Wyss ◽  
Catherine E. Housecroft ◽  
Edwin C. Constable

By systematic tuning of the components of the electrolyte, the performances of dye-sensitized solar cells (DSCs) with an N-heterocyclic carbene iron(II) dye have been significantly improved. The beneficial effects of an increased Li+ ion concentration in the electrolyte lead to photoconversion efficiencies (PCEs) up to 0.66% for fully masked cells (representing 11.8% relative to 100% set for N719) and an external quantum efficiency maximum (EQEmax) up to approximately 25% due to an increased short-circuit current density (JSC). A study of the effects of varying the length of the alkyl chain in 1-alkyl-3-methylimidazolium iodide ionic liquids (ILs) shows that a longer chain results in an increase in JSC with an overall efficiency up to 0.61% (10.9% relative to N719 set at 100%) on going from n-methyl to n-butyl chain, although an n-hexyl chain leads to no further gain in PCE. The results of electrochemical impedance spectroscopy (EIS) support the trends in JSC and open-circuit voltage (VOC) parameters. A change in the counterion from I− to [BF4]− for 1-propyl-3-methylimidazolium iodide ionic liquid leads to DSCs with a remarkably high JSC value for an N-heterocyclic carbene iron(II) dye of 4.90 mA cm−2, but a low VOC of 244 mV. Our investigations have shown that an increased concentration of Li+ in combination with an optimized alkyl chain length in the 1-alkyl-3-methylimidazolium iodide IL in the electrolyte leads to iron(II)-sensitized DSC performances comparable with those of containing some copper(I)-based dyes.


2015 ◽  
Vol 787 ◽  
pp. 3-7 ◽  
Author(s):  
S. Karuppuchamy ◽  
C. Brundha

We demonstrated the construction and performance of dye-sensitized solar cells (DSCs) based on nanoparticles of TiO2coated with thin shells of MgO by simple solution growth technique. The XRD patterns confirm the presence of both TiO2and MgO in the core-shell structure. The effect of varied shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that MgO shells of all thicknesses perform as barriers that improve open-circuit voltage (Voc) of the DSCs only at the expense of a larger decrease in short-circuit current density (Jsc). The energy conversion efficiency was greatly dependent on the thickness of MgO on TiO2film, and the highest efficiency of 4.1% was achieved at the optimum MgO shell layer.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Aliefia Noor ◽  
Meri Hamdini ◽  
Salsabila Ramadina ◽  
Yuant Tiandho

<p>Dye-Sensitized Solar Cells (DSSC) is photovoltaic with a dye that functions as an acceptor of sunlight. The great potential of using DSSC lies in the ease of the synthesis process, and the dyes used can come from plants. However, like most other solar cells, increasing the operating temperature can degrade the DSSC performance and thus decrease the efficiency. This article presents a model of the relationship between the effect of temperature on DSSC performance. The model proposed is derived from the DSSC equivalence with a diode circuit. By confirming the experimental research results, it is known that the model presented in this study has excellent accuracy on various DSSC performance parameters (R2&gt; 0.99). The performance studied includes the I-V curve's shape, the value of the short-circuit current, the diode leakage current, and the open-circuit voltage. Based on daily temperature data in Pangkalpinang City, the potential performance of the DSSC could also be determined when it was developed in Kep. Bangka Belitung. The short-circuit current value obtained is in the range of 14 A with a voltage of 0.6 V. It is hoped that this proposed model can be information for the development of DSSC because of its enormous potential application in Indonesia.</p>


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 166
Author(s):  
Chi-Feng Lin ◽  
Ting-Hsuan Hsieh ◽  
Yu-Chen Chou ◽  
Pin-Hung Chen ◽  
Ci-Wun Chen ◽  
...  

We developed cobalt and carbon complex materials as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs) to replace conventional platinum (Pt) CEs. Co12 and Co15, both of which are basic cobalt derivatives, showed good redox potential with a suitable open-circuit voltage (VOC); however, their poor electrical conductivity engendered a low short-circuit current (JSC) and fill factor (FF). Mixing them with carbon black (CB) improved the electrical conductivity of the CE; in particular, JSC and FF were considerably improved. Further improvement was achieved by combining cobalt derivatives and CB through thermal sintering to produce a novel CoCB material as a CE. CoCB had good electrical conductivity and electrocatalytic capability, and this further enhanced both JSC and VOC. The optimized device exhibited a power conversion efficiency (PCE) of 7.44%, which was higher than the value of 7.16% for a device with a conventional Pt CE. The conductivity of CoCB could be further increased by mixing it with PEDOT:PSS, a conducting polymer. The device’s JSC increased to 18.65 mA/cm2, which was considerably higher than the value of 14.24 mA/cm2 for the device with Pt CEs. The results demonstrate the potential of the cobalt and carbon complex as a CE for DSSCs.


Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 405 ◽  
Author(s):  
Ahmad Umar ◽  
Mohammad Akhtar ◽  
Tubia Almas ◽  
Ahmed Ibrahim ◽  
Mohammed Al-Assiri ◽  
...  

The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowers were clearly revealed that the grown flower structures were in high density with 3D floral structure comprising of small rods assembled as petals. Using UV absorption and Raman spectroscopy, the optical and structural properties of the ZnO nanoflowers were studied. The photoelectrochemical properties of the ZnO nanoflowers were studied by utilizing as a photoanode for the manufacture of dye-sensitized solar cells (DSSCs). The fabricated DSSC with ZnO nanoflowers photoanode attained reasonable overall conversion efficiency of ~1.40% and a short-circuit current density (JSC) of ~4.22 mA cm−2 with an open circuit voltage (VOC) of 0.615 V and a fill factor (FF) of ~0.54. ZnO nanostructures have given rise to possible utilization as an inexpensive and efficient photoanode materials for DSSCs.


2007 ◽  
Vol 1013 ◽  
Author(s):  
Kinji Onoda ◽  
Supachai Ngamsinlapasathian ◽  
Takuya Fujieda ◽  
Susumu Yoshikawa

AbstractThe photovoltaic properties of dye-sensitized solar cells (DSCs) based on fluorine doped tin oxide (FTO) and Ti substrates were investigated. The sheet resistances of the substrates were correlated to the photovoltaic properties. The efficiency of the Ti substrate based DSC was higher than that of the FTO substrate based DSC, due to a high fill factor (FF). To minimize the internal resistance of the DSCs, Ti plate was used as a support for nanocrystalline TiO2, because of its low sheet resistance. As the light was absorbed by the electrolyte layer, the incident photon to current efficiency (IPCE) values decreased in the range between 400-600 nm. The electrolyte concentrations were optimized to obtain a higher cell performance. When using an electrolyte composed of 0.02 M I2, 0.2 M LiI, and 0.5 M 4-tert-butylpyridine, an efficiency of 4.98% was obtained for the Ti substrate based DSC with a short circuit current density (Jsc) of 11.25 mAcm-2, an open circuit voltage (Voc) of 0.692 V, and a FF of 0.639. The effect of the cell size on the photovoltaic properties was also investigated. The rate of decrease in a FF and efficiency with increase in the cell size was lower for the Ti substrate based DSCs than the FTO substrate based DSCs. This result indicates that Ti plate is a potential candidate for production of large DSCs.


Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 433-440
Author(s):  
Sri Wuryanti

Abstract In this study, analysis was performed of the macro characterization of solar cells with chlorophyll dye from Syzygium paniculatum, using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Solar cells based on titanium dioxide (TiO2) nanomaterial and chlorophyll dye from S. paniculatum can increase efficiency due to flavonoids and batulinic acid content. Photoanode TiO2 is one of the essential factors determining the photovoltaic properties of dye-sensitized solar cells (DSSCs) and shade, which broadens the absorption spectrum. Furthermore, the method used in this research involved varying the colour of the S. paniculatum leaves, namely red (SP-Red), green (SP-Green) and a red–green mix (SP-Mix). From a macro analysis, SEM observations resulted in agglomerated and aggregated TiO2-polyethylene glycol (PEG)-dye layers with irregular shapes. EDX observation resulted in a peak in Ti at 5 keV and all constituents were detected with an O:Ti ratio of 3.47:1 for FTO-TiO2/PEG using SP-Green. Measurement of voltage-current (IV) using a digital multimeter indicated that the best occurred in the DSSC with SP-Green, resulting in a short-circuit current density (Isc) of 0.0047 mA/cm2, an open-circuit voltage (Voc) of 0.432 V, a charging factor (FF) of 0.749 and an efficiency (η) of 3.724%.


2020 ◽  
Vol 21 (5) ◽  
pp. 1735
Author(s):  
Elias Lüthi ◽  
Paola Andrea Forero Cortés ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

Five 6,6′-dimethyl-2,2′-bipyridine ligands bearing N-arylmethaniminyl substituents in the 4- and 4′-positions were prepared by Schiff base condensation in which the aryl group is Ph (1), 4-tolyl (2), 4-tBuC6H4 (3), 4-MeOC6H4 (4), and 4-Me2NC6H4 (5). The homoleptic copper(I) complexes [CuL2][PF6] (L = 1–5) were synthesized and characterized, and the single crystal structure of [Cu(1)2][PF6]·Et2O was determined. By using the “surfaces-as-ligands, surfaces-as-complexes” (SALSAC) approach, the heteroleptic complexes [Cu(6)(Lancillary)]+ in which 6 is the anchoring ligand ((6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl)bis(4,1-phenylene))bis(phosphonic acid)) and Lancillary = 1–5 were assembled on FTO-TiO2 electrodes and incorporated as dyes into n-type dye-sensitized solar cells (DSCs). Data from triplicate, fully-masked DSCs for each dye revealed that the best-performing sensitizer is [Cu(6)(1)]+, which exhibits photoconversion efficiencies (η) of up to 1.51% compared to 5.74% for the standard reference dye N719. The introduction of the electron-donating MeO and Me2N groups (Lancillary = 4 and 5) is detrimental, leading to a decrease in the short-circuit current densities and external quantum efficiencies of the solar cells. In addition, a significant loss in open-circuit voltage is observed for DSCs sensitized with [Cu(6)(5)]+, which contributes to low values of η for this dye. Comparisons between performances of DSCs containing [Cu(6)(1)]+ and [Cu(6)(4)]+ with those sensitized by analogous dyes lacking the imine bond indicate that the latter prevents efficient electron transfer across the dye.


Sign in / Sign up

Export Citation Format

Share Document