scholarly journals Motorcycle Movement Model Based on Markov Chain Process in Mixed Traffic

Author(s):  
Rina Mardiati ◽  
Bambang R Trilaksono ◽  
Yudi S Gondokaryono ◽  
Sony S Wibowo

<p>Mixed traffic systems are dynamically complex since there are many parameters and variables that influence the interactions between the different kinds of vehicles. Modeling the behavior of vehicles, especially motorcycle which has erratic behavior is still being developed continuously, especially in developing countries which have heterogeneous traffic. To get a better understanding of motorcycle behavior, one can look at maneuvers performed by drivers. In this research, we tried to build a model of motorcycle movement which only focused on maneuver action to avoid the obstacle along with the trajectories using a Markov Chain approach. In Markov Chain, the maneuver of motorcycle will described by state transition. The state transition model is depend on probability function which will use for determine what action will be executed next. The maneuver of motorcycle using Markov Chain model was validated by comparing the analytical result with the naturalistic data, with similarity is calculated using MSE. In order to know how good our proposed method can describe the maneuver of motorcycle, we try to compare the MSE of the trajectory based on Markov Chain model with those using polynomial approach. The MSE results showed the performance of Markov Chain Model give the smallest MSE which 0.7666 about 0.24 better than 4th order polynomial.</p>

Risks ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Manuel L. Esquível ◽  
Gracinda R. Guerreiro ◽  
Matilde C. Oliveira ◽  
Pedro Corte Real

We consider a non-homogeneous continuous time Markov chain model for Long-Term Care with five states: the autonomous state, three dependent states of light, moderate and severe dependence levels and the death state. For a general approach, we allow for non null intensities for all the returns from higher dependence levels to all lesser dependencies in the multi-state model. Using data from the 2015 Portuguese National Network of Continuous Care database, as the main research contribution of this paper, we propose a method to calibrate transition intensities with the one step transition probabilities estimated from data. This allows us to use non-homogeneous continuous time Markov chains for modeling Long-Term Care. We solve numerically the Kolmogorov forward differential equations in order to obtain continuous time transition probabilities. We assess the quality of the calibration using the Portuguese life expectancies. Based on reasonable monthly costs for each dependence state we compute, by Monte Carlo simulation, trajectories of the Markov chain process and derive relevant information for model validation and premium calculation.


2015 ◽  
Vol 2 (1) ◽  
pp. 399-424
Author(s):  
M. S. Cavers ◽  
K. Vasudevan

Abstract. Directed graph representation of a Markov chain model to study global earthquake sequencing leads to a time-series of state-to-state transition probabilities that includes the spatio-temporally linked recurrent events in the record-breaking sense. A state refers to a configuration comprised of zones with either the occurrence or non-occurrence of an earthquake in each zone in a pre-determined time interval. Since the time-series is derived from non-linear and non-stationary earthquake sequencing, we use known analysis methods to glean new information. We apply decomposition procedures such as ensemble empirical mode decomposition (EEMD) to study the state-to-state fluctuations in each of the intrinsic mode functions. We subject the intrinsic mode functions, the orthogonal basis set derived from the time-series using the EEMD, to a detailed analysis to draw information-content of the time-series. Also, we investigate the influence of random-noise on the data-driven state-to-state transition probabilities. We consider a second aspect of earthquake sequencing that is closely tied to its time-correlative behavior. Here, we extend the Fano factor and Allan factor analysis to the time-series of state-to state transition frequencies of a Markov chain. Our results support not only the usefulness the intrinsic mode functions in understanding the time-series but also the presence of power-law behaviour exemplified by the Fano factor and the Allan factor.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091425
Author(s):  
Ning Wu ◽  
Zhongliang Yang ◽  
Yi Yang ◽  
Lian Li ◽  
Poli Shang ◽  
...  

Information-hiding technology has recently developed into an area of significant interest in the field of information security. As one of the primary carriers in steganography, it is difficult to hide information in texts because there is insufficient information redundancy. Traditional text steganography methods are generally not robust or secure. Based on the Markov chain model, a new text steganography approach is proposed that focuses on transition probability, one of the most important concepts of the Markov chain model. We created a state transition-binary sequence diagrams based on the aforementioned concepts and used them to guide the generation of new texts with embedded secret information. Compared to other related works, the proposed method exploits the use of the transition probability in the process of steganographic text generation. The associated developed algorithm also encrypts the serial number of the state transition-binary sequence diagram needed by the receiver to extract the information, which further enhances the security of the steganography information. Experiments were designed to evaluate the proposed model. The results revealed that the model had higher concealment and hidden capacity compared to previous methods.


2015 ◽  
Vol 22 (5) ◽  
pp. 589-599 ◽  
Author(s):  
M. S. Cavers ◽  
K. Vasudevan

Abstract. Directed graph representation of a Markov chain model to study global earthquake sequencing leads to a time series of state-to-state transition probabilities that includes the spatio-temporally linked recurrent events in the record-breaking sense. A state refers to a configuration comprised of zones with either the occurrence or non-occurrence of an earthquake in each zone in a pre-determined time interval. Since the time series is derived from non-linear and non-stationary earthquake sequencing, we use known analysis methods to glean new information. We apply decomposition procedures such as ensemble empirical mode decomposition (EEMD) to study the state-to-state fluctuations in each of the intrinsic mode functions. We subject the intrinsic mode functions, derived from the time series using the EEMD, to a detailed analysis to draw information content of the time series. Also, we investigate the influence of random noise on the data-driven state-to-state transition probabilities. We consider a second aspect of earthquake sequencing that is closely tied to its time-correlative behaviour. Here, we extend the Fano factor and Allan factor analysis to the time series of state-to-state transition frequencies of a Markov chain. Our results support not only the usefulness of the intrinsic mode functions in understanding the time series but also the presence of power-law behaviour exemplified by the Fano factor and the Allan factor.


2008 ◽  
Vol 18 (02) ◽  
pp. 593-598
Author(s):  
LEI CHAI ◽  
DAHUI WANG ◽  
JIAWEI CHEN ◽  
MENGHUI LI ◽  
ZENGRU DI

A Markov chain model is constructed to simulate pattern formation arising from an evolutionary population of interactive homogeneous agents. In the structure of optimal evolution and stochastic properties, the model exhibits emergent properties with rich dynamical diagrams. We study the cluster splitting transition with the coarsening period-adding phenomena shown by the model, which gives an example of pattern formation in the evolution of complex system and reveals dynamical behavior of the Markov chain process.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2069-2072 ◽  
Author(s):  
Ying Li

Combined with grey model and the characteristics of the Markov chain, based on the grey prediction model, calculating the state transition probability, grey Markov chain model is established. The results show that the grey Markov chain model has higher prediction accuracy than GM (1, 1) model, can offer references for passenger flow organization.


2004 ◽  
Vol 68 (2) ◽  
pp. 346 ◽  
Author(s):  
Keijan Wu ◽  
Naoise Nunan ◽  
John W. Crawford ◽  
Iain M. Young ◽  
Karl Ritz

Author(s):  
R. Jamuna

CpG islands (CGIs) play a vital role in genome analysis as genomic markers.  Identification of the CpG pair has contributed not only to the prediction of promoters but also to the understanding of the epigenetic causes of cancer. In the human genome [1] wherever the dinucleotides CG occurs the C nucleotide (cytosine) undergoes chemical modifications. There is a relatively high probability of this modification that mutates C into a T. For biologically important reasons the mutation modification process is suppressed in short stretches of the genome, such as ‘start’ regions. In these regions [2] predominant CpG dinucleotides are found than elsewhere. Such regions are called CpG islands. DNA methylation is an effective means by which gene expression is silenced. In normal cells, DNA methylation functions to prevent the expression of imprinted and inactive X chromosome genes. In cancerous cells, DNA methylation inactivates tumor-suppressor genes, as well as DNA repair genes, can disrupt cell-cycle regulation. The most current methods for identifying CGIs suffered from various limitations and involved a lot of human interventions. This paper gives an easy searching technique with data mining of Markov Chain in genes. Markov chain model has been applied to study the probability of occurrence of C-G pair in the given   gene sequence. Maximum Likelihood estimators for the transition probabilities for each model and analgously for the  model has been developed and log odds ratio that is calculated estimates the presence or absence of CpG is lands in the given gene which brings in many  facts for the cancer detection in human genome.


Sign in / Sign up

Export Citation Format

Share Document