scholarly journals Research on neutral-point potential control of a three-level inverter

Author(s):  
Guangjie Fu ◽  
Xinpeng Li

<p>Diode-clamped three-level inverters have been widely used in high voltage and high power fields because of their unique advantages. Nowadays, diode-clamped three-level inverters have become a research hotspot. In order to reduce the content of energy harmonics injected into the power grid by the inverter system, the neutral point potential needs to be controlled. This paper proposes a control method based on a proportional controller. The voltage sector was redefined and the design of the proportional controller was completed. In combination with the introduction of a new PWM technology, a smooth control of the midpoint potential was achieved. The effectiveness of the method is verified by simulation in MATLAB<em></em></p>

2022 ◽  
Vol 9 ◽  
Author(s):  
Zhongrui Li ◽  
Ziling Nie ◽  
Jie Xu ◽  
Huayu Li ◽  
Sheng Ai

Flywheel energy storage system is a popular energy storage technology, in which inverters are the center of electrical energy conversion, directly affecting the power capacity. Parallel operation of three-level inverters is an effective approach to achieve larger motor drive power and the interleaved operation can improve the harmonic characteristics. However, harmonic analysis models of the interleaved parallel three-level inverters are rare in the literature and how the neutral-point potential imbalance affects the harmonics characteristics has not been discussed. This article establishes the harmonic calculation for balanced and unbalanced neutral-point potential through the five-level voltage capability of the interleaved parallel three-level inverters. Moreover, a neutral-point potential control method based on zero-sequence voltage injection is proposed. The implement process of the method is proposed, and how the operating frequency affect the ability of the neutral-point potential balance is studied. Finally, the simulation and experiment results verify the feasibility and practicability of the established harmonic analysis models and the neutral-point potential control method.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Lu Xiaojuan ◽  
Wang Xinju ◽  
Dong Haiying

Aimed at the problem of DC micro grid rectifier control delay and the DC bus voltage stability, the method of two-step model predictive direct power control (TMPDPC) combined with neutral point potential control is proposed. Model predictive direct power control (MPDPC) is designed for rectifier. A cost function is then used to evaluate the active and reactive power ripples, from which the vector that generates the lowest power ripple will be applied during the next sampling interval. Two-step predictive control is designed to compensate for the delay of one-step predictive control. On the basis of this, the two-capacitor voltage unbalance problem in DC side is considered, and the neutral point potential control is added. In the Matlab/Simulink simulation, compared with control effect of direct power control (DPC) and one-step model predictive direct power control (OMPDPC), the control strategy of neutral point potential added to TMPDPC can make the system stability and control accuracy better. The validity of this scheme was validated by physical simulation at last.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012051
Author(s):  
ZhuoQun Liu ◽  
JunChi Ma ◽  
KaiXu Liu

Abstract The T-type three-level inverter topology has the advantages of low electromagnetic interference, high efficiency, and low output harmonic content. This article combines constant power inverter, independent control of active and reactive power output, Analyzed and studied the neutral point potential balance control of the T-type three-level inverter topology. Through PI adjustment control on the amount of charge of the capacitor, the midpoint voltage of the capacitor is always maintained in a balanced state, and the fluctuation of the midpoint voltage is controlled within ±0.23%. This method can effectively avoid the influence of the difference of capacitance parameters on the DC side on the midpoint voltage. The PLECS software simulation verifies the reliability of the capacitor voltage equalization circuit under the condition of the voltage imbalance at the midpoint of the DC side voltage source supply capacitor voltage equalization.


2017 ◽  
Vol 354 (17) ◽  
pp. 7605-7623 ◽  
Author(s):  
Chaoliang Dang ◽  
Xiangqian Tong ◽  
Jun Yin ◽  
Jingjing Huang ◽  
Yao Xu

Sign in / Sign up

Export Citation Format

Share Document