scholarly journals 3D Medical image compression using the quincunx wavelet coupled with SPIHT

Author(s):  
Benlabbes Haouari

<p>Medical imaging is a growing field due to the development of digital technologies that produce 3D and even 4D data. The counterpart to the resolution offered by these voluminal images resides in the amount of gigantic data, hence the need for compression. This article presents a new coding scheme dedicated to 3D medical images. The originality of our approach lies in the application of the Quinqunx wavelet transform coupled with the SPIHT encoder on a database of medical images. This approach achieves much higher compression rates, while maintaining a very acceptable visual quality.</p>

Author(s):  
Mohamed Fawzy Aly ◽  
Mahmood A. Mahmood

Medical images are digital representations of the body. Medical imaging technology has improved tremendously in the past few decades. The amount of diagnostic data produced in a medical image is vast and as a result could create problems when sending the medical data through a network. To overcome this, there is a great need for the compression of medical images for communication and storage purposes. This chapter contains an introduction to compression types, an overview of medical image modalities, and a survey on coding techniques that deal with 3D medical image compression.


Author(s):  
Mohamed Fawzy Aly ◽  
Mahmood A. Mahmood

Medical images are digital representations of the body. Medical imaging technology has improved tremendously in the past few decades. The amount of diagnostic data produced in a medical image is vast and as a result could create problems when sending the medical data through a network. To overcome this, there is a great need for the compression of medical images for communication and storage purposes. This chapter contains an introduction to compression types, an overview of medical image modalities, and a survey on coding techniques that deal with 3D medical image compression.


Author(s):  
Noor Huda Ja’afar ◽  
Afandi Ahmad

<span>The application of three-dimensional (3-D) medical image compression systems uses several building blocks for its computationally intensive algorithms to perform matrix transformation operations. Complexity in addressing large medical volumes data has resulted in vast challenges from a hardware implementation perspective. This paper presents an approach towards very-large-scale-integration (VLSI) implementation of 3-D Daubechies wavelet transform for medical image compression. Discrete wavelet transform (DWT) algorithm is used to design the proposed architectures with pipelined direct mapping technique. Hybrid method use a combination of hardware description language (HDL) and G-code, where this method provides an advantage compared to traditional method. The proposed pipelined architectures are deployed for adaptive transformation process of medical image compression applications. The soft IP core design was targeted on to Xilinx field programmable gate array (FPGA) single board RIO (sbRIO 9632). Results obtained for 3-D DWT architecture using Daubechies 4-tap (Daub4) implementation exhibits promising results in terms of area, power consumption and maximum frequency compared to Daubechies 6-tap (Daub6).</span>


Sign in / Sign up

Export Citation Format

Share Document