scholarly journals Blind image watermarking scheme based on lowest energy contourlet transform coefficient and modified arnold cat/ikeda maps

Author(s):  
Jinan N. Shehab ◽  
Hussein A. Abdulkadhim ◽  
Yousif Allbadi

<span>The widespread of global internet has led to the need for developing new methods of protecting multimedia information from exploitation, alteration or forgery, illegal distribution, and manipulation. An attacker is quickly and illegally distributing or changing multimedia information by using various means of computer technology. For detecting this manipulation, this paper suggests blind watermark image inside a host image for observing in the receiver. If the watermark image was retrieved, then the host image was not attacked or manipulated. While if not retrieved, in this case, the image was attacked. The proposed method is depending on a decomposition of the host image using lowest energy sub-bands of Contourlet transform (4-levels), with scrambling by Ikeda map of the watermark image, and selecting new positions by modified Arnold Cat map. This will produce more security and safety, as well as provide more difficulty or prevent hacking. The obtained results confirm the robustness against attacks and more effectiveness of the presented scheme compared with the other similar works. Also, using lowest energy sub-bands will expand area of embedding and this part will be considered in the future works with the color images.</span>

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Li ◽  
Musheng Wei ◽  
Fengxia Zhang ◽  
Jianli Zhao

We propose a new image watermarking scheme based on the real SVD and Arnold scrambling to embed a color watermarking image into a color host image. Before embedding watermark, the color watermark image W with size of M×M is scrambled by Arnold transformation to obtain a meaningless image W~. Then, the color host image A with size of N×N is divided into nonoverlapping N/M×N/M pixel blocks. In each (i,j) pixel block Ai,j, we form a real matrix Ci,j with the red, green, and blue components of Ai,j and perform the SVD of Ci,j. We then replace the three smallest singular values of Ci,j by the red, green, and blue values of W~ij with scaling factor, to form a new watermarked host image A~ij. With the reserve procedure, we can extract the watermark from the watermarked host image. In the process of the algorithm, we only need to perform real number algebra operations, which have very low computational complexity and are more effective than the one using the quaternion SVD of color image.


2018 ◽  
Vol 16 (07) ◽  
pp. 1850060 ◽  
Author(s):  
Ri-Gui Zhou ◽  
Peng Liu Yang ◽  
Xing Ao Liu ◽  
Hou Ian

Most of the studied quantum encryption algorithms are based on square images. In this paper, based on the improved novel quantum representation of color digital images model (INCQI), a quantum color image watermarking scheme is proposed. First, INCQI improved from NCQI is used to represent the carrier and watermark images with the size [Formula: see text] and [Formula: see text], respectively. Secondly, before embedding, the watermarking needs to be preprocessed. That is, the watermark image with the size of [Formula: see text] with 24-qubits color information is disordered by the fast bit-plane scramble algorithm, and then further expanded to an image with the size [Formula: see text] with 6-qubits pixel information by the nearest-neighbor interpolation method. Finally, the dual embedded algorithm is executed and a key image with 3-qubits information is generated for retrieving the original watermark image. The extraction process of the watermark image is the inverse process of its embedding, including inverse embedding, inverse expand and inverse scrambling operations. To show that our method has a better performance in visual quality and histogram graph, a simulation of different carrier and watermark images are conducted on the classical computer’s MATLAB.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 460 ◽  
Author(s):  
Chuying Yu ◽  
Xiaowei Li ◽  
Xinan Chen ◽  
Jianzhong Li

A novel adaptive secure holographic image watermarking method in the sharp frequency localized contourlet transform (SFLCT) domain is presented. Based upon the sine logistic modulation map and the logistic map, we develop an encrypted binary computer-generated hologram technique to fabricate a hologram of a watermark first. Owing to the enormous key space of the encrypted hologram, the security of the image watermarking system is increased. Then the hologram watermark is embedded into the SFLCT coefficients with Schur decomposition. To obtain better imperceptibility and robustness, the entropy and the edge entropy are utilized to select the suitable watermark embedding positions adaptively. Compared with other watermarking schemes, the suggested method provides a better performance with respect to both imperceptibility and robustness. Experiments show that our watermarking scheme for images is not only is secure and invisible, but also has a stronger robustness against different kinds of attack.


This paper presents a digital image watermarking scheme comprising of DWT transformation. Due to the common practice of creating the copy, transmitting and spreading the data duplication of the original data occurs. Digital image watermarking has the ability to provide a solution for the unauthorized duplication problem. The scheme designed and presented in this paper comprises of mainly two modules one for embedding the watermark within the cover image and another for retrieving the watermark from the watermarked image. The process is carried out at different levels of the DWT transformation within different sub-bands of the DWT transformation. The extraction process involves the extraction of the watermark image form different channels of the RGB image mainly red, green and blue. The robustness and imperceptibility are tested. In each of the case, the corresponding PSNR and correlation values are noted and the results obtained concludes the scheme as the robust, semi-fragile and fragile digital image watermarking at different levels of the DWT transformation


Sign in / Sign up

Export Citation Format

Share Document