scholarly journals Knowledge discovery from gene expression dataset using bagging lasso decision tree

Author(s):  
Umu Sa'adah ◽  
Masithoh Yessi Rochayani ◽  
Ani Budi Astuti

<p>Classifying high-dimensional data are a challenging task in data mining. Gene expression data is a type of high-dimensional data that has thousands of features. The study was proposing a method to extract knowledge from high-dimensional gene expression data by selecting features and classifying. Lasso was used for selecting features and the classification and regression tree (CART) algorithm was used to construct the decision tree model. To examine the stability of the lasso decision tree, we performed bootstrap aggregating (Bagging) with 50 replications. The gene expression data used was an ovarian tumor dataset that has 1,545 observations, 10,935 gene features, and binary class. The findings of this research showed that the lasso decision tree could produce an interpretable model that theoretically correct and had an accuracy of 89.32%. Meanwhile, the model obtained from the majority vote gave an accuracy of 90.29% which showed an increase in accuracy of 1% from the single lasso decision tree model. The slightly increasing accuracy shows that the lasso decision tree classifier is stable.</p>

Author(s):  
Shahla Faisal ◽  
Gerhard Tutz

AbstractHigh dimensional data like gene expression and RNA-sequences often contain missing values. The subsequent analysis and results based on these incomplete data can suffer strongly from the presence of these missing values. Several approaches to imputation of missing values in gene expression data have been developed but the task is difficult due to the high dimensionality (number of genes) of the data. Here an imputation procedure is proposed that uses weighted nearest neighbors. Instead of using nearest neighbors defined by a distance that includes all genes the distance is computed for genes that are apt to contribute to the accuracy of imputed values. The method aims at avoiding the curse of dimensionality, which typically occurs if local methods as nearest neighbors are applied in high dimensional settings. The proposed weighted nearest neighbors algorithm is compared to existing missing value imputation techniques like mean imputation, KNNimpute and the recently proposed imputation by random forests. We use RNA-sequence and microarray data from studies on human cancer to compare the performance of the methods. The results from simulations as well as real studies show that the weighted distance procedure can successfully handle missing values for high dimensional data structures where the number of predictors is larger than the number of samples. The method typically outperforms the considered competitors.


Sign in / Sign up

Export Citation Format

Share Document