feature filtering
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 32)

H-INDEX

8
(FIVE YEARS 2)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Zikai Da ◽  
Yu Gao ◽  
Zihan Xue ◽  
Jing Cao ◽  
Peizhen Wang

With the rise of deep learning technology, salient object detection algorithms based on convolutional neural networks (CNNs) are gradually replacing traditional methods. The majority of existing studies, however, focused on the integration of multi-scale features, thereby ignoring the characteristics of other significant features. To address this problem, we fully utilized the features to alleviate redundancy. In this paper, a novel CNN named local and global feature aggregation-aware network (LGFAN) has been proposed. It is a combination of the visual geometry group backbone for feature extraction, an attention module for high-quality feature filtering, and an aggregation module with a mechanism for rich salient features to ease the dilution process on the top-down pathway. Experimental results on five public datasets demonstrated that the proposed method improves computational efficiency while maintaining favorable performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuanyuan Huang ◽  
Lu Jiazhong ◽  
Haozhe Tang ◽  
Xiaolei Liu

Nowadays, botnet has become a threat in the area of cybersecurity, and, worse still, it is difficult to be detected in complex network environments. Thus, traffic analysis is adopted to detect the botnet since this kind of method is practical and effective; however, the false rate is very high. The reason is that normal traffic and botnet traffic are quite close to the border, making it so difficult to be recognized. In this paper, we propose an algorithm based on a hybrid association rule to detect and classify the botnets, which can calculate botnets’ boundary traffic features and receive effects in the identification between normal and botnet traffic ideally. First, after collecting the data of different botnets in a laboratory, we analyze botnets traffic features by processing a data mining on it. The suspicious botnet traffic is filtered through DNS protocol, black and white list, and real-time feature filtering methods. Second, we analyze the correlation between domain names and IP addresses. Combining with the advantages of the existing time-based detection methods, we do a global correlation analysis on the characteristics of botnets, to judge whether the detection objects can be botnets according to these indicators. Then, we calculate these parameters, including the support, trust, and membership functions for association rules, to determine which type of botnet it belongs to. Finally, we process the test by using the public dataset and it turns out that the accuracy of our algorithm is higher.


2021 ◽  
Vol 13 (13) ◽  
pp. 7486
Author(s):  
Yen-Liang Chen ◽  
Chia-Ling Chang ◽  
An-Qiao Sung

Product reviews co-written by many Internet reviewers can help consumers make purchase decisions and provide a basis for companies to improve their business strategies. For the company, the most important thing is to understand how the various factors of reviews influence the purchase intention. Therefore, we took this issue as the core and investigated the influence of eWOM on purchase intention based on helpfulness, credibility, information quality and professionalism. We adopted feature filtering algorithms and proposed an ensemble model to integrate these classification results to obtain the most accurate prediction. The empirical evaluation shows that the models based on the four importan aspects of reviews can effectively predict the degree of impact of reviews on purchase intention.


Author(s):  
Darshak Gadara ◽  
Katerina Coufalikova ◽  
Juraj Bosak ◽  
David Smajs ◽  
Zdenek Spacil

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarv Priya ◽  
Tanya Aggarwal ◽  
Caitlin Ward ◽  
Girish Bathla ◽  
Mathews Jacob ◽  
...  

AbstractSide experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle (LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). Various side study experiments were evaluated: Original data without and with intraclass correlation (ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine learning and feature selection strategies were evaluated. Primary analysis included all PH patients with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957–0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance of combined LV and RV masks was superior to individual masks alone. There was variation in top performing models across all approaches (AUC 0.862–0.958). DAFIT approach with features from combined LV and RV masks provide superior performance with poor performance of feature filtering approaches. Model performance varies based upon the feature selection and model combination.


2021 ◽  
Author(s):  
Sarv Priya ◽  
Tanya Aggarwal ◽  
Caitlin Ward ◽  
Girish Bathla ◽  
Mathews Jacob ◽  
...  

Abstract Side experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle (LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). Various side study experiments were evaluated: Original data without and with intraclass correlation (ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine learning and feature selection strategies were evaluated. Primary analysis included all PH patients with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957–0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance of combined LV and RV masks was superior to individual masks alone. There was variation in top performing models across all approaches (AUC 0.862–0.958). DAFIT approach with features from combined LV and RV masks provide superior performance with poor performance of feature filtering approaches. Model performance varies based upon the feature selection and model combination.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang ◽  
Shining Chen

For unmanned aerial vehicle (UAV), object detection at different scales is an important component for the visual recognition. Recent advances in convolutional neural networks (CNNs) have demonstrated that attention mechanism remarkably enhances multiscale representation of CNNs. However, most existing multiscale feature representation methods simply employ several attention blocks in the attention mechanism to adaptively recalibrate the feature response, which overlooks the context information at a multiscale level. To solve this problem, a multiscale feature filtering network (MFFNet) is proposed in this paper for image recognition system in the UAV. A novel building block, namely, multiscale feature filtering (MFF) module, is proposed for ResNet-like backbones and it allows feature-selective learning for multiscale context information across multiparallel branches. These branches employ multiple atrous convolutions at different scales, respectively, and further adaptively generate channel-wise feature responses by emphasizing channel-wise dependencies. Experimental results on CIFAR100 and Tiny ImageNet datasets reflect that the MFFNet achieves very competitive results in comparison with previous baseline models. Further ablation experiments verify that the MFFNet can achieve consistent performance gains in image classification and object detection tasks.


Sign in / Sign up

Export Citation Format

Share Document