scholarly journals Particle swarm optimization tuned unified power flow controller for power oscillation reduction

Author(s):  
Ananda M. H. ◽  
M. R. Shivakumar

One of the best flexible AC transmission system (FACTS) is unified power flow controller (UPFC). As it gets more benefit from both real and reactive power transfer, it is used in power system for controlling the transmitted power. The UPFC controls the power on the transmission side of the power system. When the real as well as reactive power is set the UPFC tries to follow the command by using the proportional and integral (PI) controller. But in some power systems the PI controllers cannot produce the proper power due to the power oscillations. These oscillations are created due to PI controller properties. In this paper the PI controller is replaced with the particle swarm optimization tuned PI controller (PSO-PI). It minimizes the power oscillations by using the objective function. The MATLAB 2017b is used to demonstrate the power transfer curves and the voltages. The IEEE 9 bus system is being used as a reference system.

Author(s):  
Vireshkumar Mathad ◽  
Gururaj Kulkarni

The series and shunt control scheme of unified power flow controller (UPFC) impacts the performance and stability of the power system during power swing. UPFC is the most versatile and voltage source converter device as it can control the real and reactive power of the transmission system simultaneously or selectively. When any system is subjected to any disturbance or fault, there are many challenges in damping power oscillation using conventional methods. This paper presents the neural network-based controller that replaces the proportional-integral (PI) controller to minimize the power oscillations. The performance of the artificial neural network (ANN) controller is evaluated on IEEE 9 bus system and compared with a conventional PI controller.


The power flow control is one the important part of power system to maintain power system stability. If the real power and reactive power can be controlled then the automatic control of the power system gives numerous possibilities. The Flexible AC Transmission System (FACTs) are the devices meant for this operation. There are series and shunt type of FACTs devices available. The Unified Power Flow Controller (UPFC) is one of the best devices in FACTs devices in AC power system. The power flows can be controlled in series and shunt connections using the two converters. The power oscillations are common in UPFC when the reference powers are changed. The PI controllers are replaced with PSOA tuned PI controller to reduces the power oscillations and reduces the settling time. The problem is formulated to minimize the settling time of the power value. The series and shunt controllers are tuned with particle swarm optimization algorithm (PSOA) to tune the PI controller parameters available in it. The MATLAB Simulink version 2017b is used here for the analysis and well known UPFC test system with three generators are used here for testing the proposed method. The results show PSOA tuned PI controller provides better oscillation damping with reduced settling time.


Author(s):  
Anuj Singh ◽  
Dr. Sandeep Sharma ◽  
Karan Sharma ◽  
Flansha Jain ◽  
Shreyanshu Kumar Jena

A Power System is actually a vast system that requires an outstanding plan for maintaining the continual flow of electricity. When a fault occurs at the power system, number of difficulties arises because of transients in system. so to attenuate these transients, power electronics based devices like FACTS are utilized. A unified power flow controller (UPFC) is one among different power electronics controller which can dispense VAR compensation, line impedance control and phase shifting. The thought is to see potential of UPFC to require care of active and reactive power movement within the compensated line (including UPFC) and to shrink the falloff of the bus voltage in case of grounding fault within the cable. power system block consisting of simulink is used for numerical analysis. Simulation outcomes from MATLAB reflects major improvement in the overall system’s behaviour with UPFC in sustain the voltage and power flow even under severe line faults by proper injection of series voltage into the cable at the point of connection. outcomes shows how the UPFC contributes effectively to a faster regaining of the power system to the pre-fault conditions.


Author(s):  
Million Alemayehu Bedasso* ◽  
R. Srinu Naik

In order to eliminate active and reactive power losses in the power system, this paper proposes TOPSIS and DE algorithm for determining the best location and parameter settings for the Unified Power Flow Controller (UPFC). To mitigate power losses, the best UPFC allocation can be achieved by re-dispatching load flows in power systems. The cost of incorporating UPFC into the power system. As a consequence, the proposed objective feature in this paper was created to address this problem. The IEEE 14-bus and IEEE 30-bus systems were used as case studies in the MATLAB simulations. When compared to particle swarm optimization, the results show that DE is a simple to use, reliable, and efficient optimization technique than (PSO). The network's active and reactive power losses can be significantly reduced by putting UPFC in the optimum position determined by TOPSIS ranking method.


Author(s):  
T. Praveen Kumar ◽  
N. Subrahmanyam ◽  
Maheswarapu Sydulu

In this manuscript, the Power management of grid integrated hybrid distributed generation (DG) system with Particle swarm optimization (PSO) algorithm is proposed. The hybrid DG system combines with photovoltaic, wind turbine, fuel cell, battery. Depending on the use of hybrid sources and the changes of power production the variation of power can occurs in the DG system. The major purpose of the proposed method restrains the power flow (PF) on active with reactive power between the source and grid side. In the power system control the proposed PSO method is utilized to maximize the active with reactive PF and the controllers. The proposed method interact the load requirement energy and maintain the load sensitivity due to charging and discharging battery control. In the DG system, the proposed PSO method allows maximum power flow. To assess the PF, the constraints of equality and inequality have been evaluated and they are utilized to determine the accessibility of renewable energy source (RES), electricity demand, and the storage elements of charge level. The protection of the power system is enhanced based on the proposed PSO method. Additionally, for retaining a stable output the renewable power system and battery is used. The proposed method is activated in MATLAB/Simulink working platform and the efficiency is likened with other existing methods.


2016 ◽  
Vol 51 (3) ◽  
pp. 231-238
Author(s):  
M Firouzjahi ◽  
A Shokri

Among the Unified Power Flow Controller (UPFC) tools, Flexible Alternating Current Transmission Systems (FACTS) have ability to control the transmitted power, improve transient and dynamic stability and improve the profile of the voltage and damping of the oscillations in the power system. Using the proportional-integral (PI) and proportional-integral-derivative (PID) controllers is a custom method. Selecting the PI and PID coefficients is through different methods. Also designing a resistant controller which can control the system in different points of work has been continuously considered by researchers. In this regard, in order to improve the performance of UPFC controllers, adjusting its parameters is required optimally which this matter itself would facilitate accessing to control objectives. In this project, UPFC is used for damping the oscillations of the power system. Also, in order to adjust the controller parameters optimally, evolutionary algorithms like Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Hybrid Particle Swarm Optimization (HPSO) and other algorithms are used.Bangladesh J. Sci. Ind. Res. 51(3), 231-238, 2016


2019 ◽  
Vol 891 ◽  
pp. 246-252
Author(s):  
Nattachote Rugthaicharoencheep ◽  
Manat Boonthienthong ◽  
Aroon Charlangsut

This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in power system. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/ reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. PSO is applied to solve the OPF problem for optimal power flow the optimal power flow program output becomes a schedule to be used by operators in the process of OPF-PSO (Optimal Power Flow - Particle swarm optimization) PSO applied to optimal reactive power dispatch is evaluated on an IEEE 30-bus power system. The optimization strategy is general and can be used to solve other power system optimization problems as well.


Sign in / Sign up

Export Citation Format

Share Document