scholarly journals Artificial-neural-network based unified power flow controller for mitigation of power oscillations

Author(s):  
Vireshkumar Mathad ◽  
Gururaj Kulkarni

The series and shunt control scheme of unified power flow controller (UPFC) impacts the performance and stability of the power system during power swing. UPFC is the most versatile and voltage source converter device as it can control the real and reactive power of the transmission system simultaneously or selectively. When any system is subjected to any disturbance or fault, there are many challenges in damping power oscillation using conventional methods. This paper presents the neural network-based controller that replaces the proportional-integral (PI) controller to minimize the power oscillations. The performance of the artificial neural network (ANN) controller is evaluated on IEEE 9 bus system and compared with a conventional PI controller.

Author(s):  
Ananda M. H. ◽  
M. R. Shivakumar

One of the best flexible AC transmission system (FACTS) is unified power flow controller (UPFC). As it gets more benefit from both real and reactive power transfer, it is used in power system for controlling the transmitted power. The UPFC controls the power on the transmission side of the power system. When the real as well as reactive power is set the UPFC tries to follow the command by using the proportional and integral (PI) controller. But in some power systems the PI controllers cannot produce the proper power due to the power oscillations. These oscillations are created due to PI controller properties. In this paper the PI controller is replaced with the particle swarm optimization tuned PI controller (PSO-PI). It minimizes the power oscillations by using the objective function. The MATLAB 2017b is used to demonstrate the power transfer curves and the voltages. The IEEE 9 bus system is being used as a reference system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Abstract In recent years, the use of wind energy to generate electricity in the world has been accelerating and growing. Wind farms are unstable when dynamic voltage fluctuations occur, especially sudden and sudden changes in load, and show oscillating performance at their output. In this paper, the Unified Power Flow Controller (UPFC) has been simulated and studied by Matlab software to improve the dynamic stability and transient behavior of the wind power plant in the event of sudden load changes. The simulation results show that by controlling the UPFC series inverter, voltage fluctuations in the PCC bus are prevented and the UPFC parallel inverter injects power after changing the load for faster recovery and stability of the PCC bus voltage and thus the stability of the wind farm. The UPFC can control the active and reactive power at the transmission line, and in fact, controls the output of the wind turbine with the generator from both sides to the fluctuations caused by sudden load changes that play a role such as sudden disturbances and oscillating errors. Also, the presence of UPFC in the system reduces power fluctuations.


Author(s):  
A. Naveena ◽  
M.Venkateswara Rao

The equipments based on the power electronics have been improved under the name of Flexible Alternating Current Transmission Systems (FACTS) in the last years. Unified Power Flow Controller (UPFC) is the most widely used FACTS device to control the power flow and to optimize the system stability in the transmission line. UPFC is a FACTS devices that can control active and reactive power flow in transmission line by means of injection controllable series voltage to the transmission line. This paper proposes a new connection for a Unified Power Flow Controller (UPFC) to control the active and reactive power flow control in two sides of a transmission line independently and it regulates bus voltage in the same transmission line, furthermore it is possible to balance line current too. This connection of the UPFC will be called an center node UPFC (C_UPFC). It is one of the newest devices within the FACTS technology. The structure and capability of the C_UPFC is discussed and its control scheme is based on the d-q orthogonal coordinates. According to this, the performance of UPFC for several modes of operations using different control mechanisms based on Proportional-Integral (PI) and PID based controllers has been studied. The obtained simulation results from Matlab/simulink confirm the effective features.


Author(s):  
Jaya Raju Gaddala ◽  
Sambasiva Rao Gudapati

Harmonics reduction techniques in source current were found to be unreliable and imbalanced with different load conditions. This certain unreliability problem in harmonics mitigation is caused by non-linear loads. The harmonics and power quality problems are eliminated by filters. These filters are expensive to provide a dynamic response under various load conditions. The new unified power flow controller composed of a series and shunt compensator provides more secured power systems and good voltage stability at various load conditions. D-Q theory is used to generate the reference current from the AC source current. D-Q theory produces sinusoidal harmonics that are opposite to load harmonics. This UPFC can absorb or inject reactive power in the PCC. D-Q theory followed by a hysteresis current controller generates PWM pulses to the shunt and series compensator. The PI and fuzzy logic controllers preserve the DC link voltage in the storage capacitor. The proposed technique has been simulated by using Matlab simulation under different load conditions.


2021 ◽  
Vol 23 (12) ◽  
pp. 207-211
Author(s):  
DR . Dipesh. M .Patel ◽  
◽  
Prof. (Dr.) Karunesh Saxena ◽  

This paper deals with the analysis and simulation of the Unified Power Flow Controller (UPFC) for Grid connected DFIG wind farm system mitigation. The purpose of the paper is to derive and analyze a reactive power control strategy of UPFC dedicated for DFIG mitigation. The FACT device Unified Power Flow Controller (UPFC) is connected with load bus. Paper has demonstrated the improvement in voltages, power transferred to grid, active and reactive power control. Matlab/simulink is used for the work. Paper demonstrated the simulation results for with and without UPFC for Grid connected Doubly Fed Induction Generator wind farm system.


Sign in / Sign up

Export Citation Format

Share Document