Fault Location Techniques in Electrical Power System-A Review

Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Mohamad Amirul Hafiz Mohamed ◽  
Abdul Khairi Abdul Rahman ◽  
Chin Wan Ling ◽  
...  

<p>Electric fault is the main challenge in the process of providing continues electric supply. Fault can occur at anytime and anywhere. Due to the fault causes are mainly based on natural disaster or accident. Most fault occurrence hardly predicted nor avoided. Therefore, a quick response fault detection is necessary to ensure that the fault area is maintained to ensure a continuous power supply system. Hence, a system is required to detect and locate the position of the fault in the power system especially in the transmission line and distribution line. This paper will review the type of fault that possibly occurs in an electric power system, the type of fault detection and location technique that are available together with the protection device that can be utilized in the power system to protect the equipment from electric fault.</p><p> </p>

2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Dzulfikar Muhammad Azhar ◽  
Yuniarto Yuniarto

Dzulfikar Muhammad Azhar, Yuniarto, in this paper explian that disruption of the power distribution network of 20 KV greatly influence the level of reliability of electric power system. Localize interference by means of network down one by one causing a long recovery time. As a result, SAIDI relatively high value. Protection Relays 551 SEL has a feature that can save the nominal fault current value last received. The value stored in the relay memory. Value of fault current can be processed into the distance nuisance. Thus, the fault current value can help officers to track the fault location based on distance. SCADA as a system that monitors and controls the electrical power system equipment remotely in real time on duty to display the current value of disturbance located at 551 SEL protection relays to be sent to the Control Center or the Master Station. Keywords : SCADA, fault current, relay protection 551 SEL


2021 ◽  
Vol 926 (1) ◽  
pp. 012030
Author(s):  
Fitriani ◽  
I C Gunadin ◽  
A Suyuti ◽  
A Siswanto

Abstract Dynamic stability is one of the important aspects of maintaining the stability of an electrical power system as a whole. Dynamic stability study is the ability of the electric power system to return to the equilibrium point after a relatively small disturbance suddenly occurs for a long time. In this paper, we offer a method of rescheduling the generator to improve system stability by looking at the critical clearing time (CCT). Changes in the CCT value are due to changes in the load on each bus. The modelling of the IEEE 14 bus system is carried out with the help of the Simulink Power System Analysis Toolbox (PSAT) 2.1.10, which is integrated with the MATLAB R. 2016a program. The simulation results show that the CCT value decreases as the fault location gets closer to the main generator.


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


2002 ◽  
Vol 12 (06) ◽  
pp. 1333-1356 ◽  
Author(s):  
YOSHISUKE UEDA ◽  
HIROYUKI AMANO ◽  
RALPH H. ABRAHAM ◽  
H. BRUCE STEWART

As part of an ongoing project on the stability of massively complex electrical power systems, we discuss the global geometric structure of contacts among the basins of attraction of a six-dimensional dynamical system. This system represents a simple model of an electrical power system involving three machines and an infinite bus. Apart from the possible occurrence of attractors representing pathological states, the contacts between the basins have a practical importance, from the point of view of the operation of a real electrical power system. With the aid of a global map of basins, one could hope to design an intervention strategy to boot the power system back into its normal state. Our method involves taking two-dimensional sections of the six-dimensional state space, and then determining the basins directly by numerical simulation from a dense grid of initial conditions. The relations among all the basins are given for a specific numerical example, that is, choosing particular values for the parameters in our model.


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


2020 ◽  
Vol 7 (08) ◽  
pp. 268-273
Author(s):  
Raheemullah Khan ◽  
◽  
Jehan Parvez ◽  
Abdur Rehman ◽  
Muhammad Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document