scholarly journals A random PWM control strategy for a three level inverter used in a grid connected photovoltaic system

Author(s):  
Kamal Himour ◽  
K. Iffouzar

<p>The work presented in this paper is devoted to the control of a photovoltaic system connected to grid by a three level diode clamed inverter. A control structure based on three parts: dc link voltage control, power injected control and current control is proposed. In this work, the random PWM strategy is used to generate control signals for the multilevel inverter used us an interface to connect photovoltaic generators to the grid. Numerical simulations are performed using MATLAB / Simulink software, the simulation results for the proposed system indicate  the performances of the proposed control structure, minimization of harmonics by the random PWM strategy applied and injection to the grid more active power by the multilevel inverter structure.</p><p> </p>

2013 ◽  
Vol 768 ◽  
pp. 75-79
Author(s):  
C. Bharatiraja ◽  
R. Palanisamy ◽  
Sushuruth Sadagopan ◽  
R. Latha ◽  
S.S. Dash

A Split inductor is used with Exiting Inverter to interconnect inverter with grid connected system which avoids the usage of transformer. While using split inductor NPC-MLI shoot-through problems are producing in the bridge legs of an NPCTLI, its operation stability is ruined. Hysteresis Current Control (HCC) offers an excellent current control performance to NPCTLI. It acts based on the error current value i) and hysteresis band value (h). The proposed topology guarantees for no common-mode voltage, shoot-through possibility and capacitor balancing problem. Finally, the simulation results of a proposed SI-NPCTLI system verified using MATLAB SIMULINK.


Author(s):  
Huajun Wu ◽  
Yupeng Wang ◽  
Bo Liu ◽  
Lidong Chen ◽  
Gen Pei

Author(s):  
Taibi Ahmed ◽  
Hartani Kada ◽  
Allali Ahmed

In high power traction system applications two or more machines are fed by one converter. This topology results in a light, more compact and less costly system. These systems are called multi-machines single-converter systems. The problems posed by different electrical and mechanical couplings in these systems (MMS) affect various stages of the systems and require control strategy to reduce adverse effects. Control of multi-machines single-converter systems is the subject of this paper. The studied MMS is an electric vehicle with four in-wheel PMS motors. A three-leg inverter supplies two permanent magnet synchronous machines which are connected to the front right and rear right wheels, and another inverter supplies the left side. Several methods have been proposed for the control of multi-machines single-inverter systems, the master-slave control structure seems best adapted for our traction system. In this paper, a new control structure based on DTC method is used for the control of bi-machine traction system of an EV. This new control has been implanted in simulation to analyze its robustness in the presence of the various load cases involved in our electric vehicle traction chain. Simulation results indicated that this structure control allowed the stability of the traction system.


2014 ◽  
Vol 1049-1050 ◽  
pp. 767-770
Author(s):  
Wen Bao Hou ◽  
De Lu Li

Taking three-level four-leg active power filter (APF) as research object, this paper establishes the corresponding mathematical model. In addition, the paper establishes the Matlab model based on predictive current control strategy, and then the theoretical analysis and simulation research are conducted. The simulation and experimental results show that the APF with predictive current control strategy can compensate harmonic current and neutral current well and make the two capacitors voltage balance effectively.


2013 ◽  
Vol 380-384 ◽  
pp. 2962-2966
Author(s):  
Chun Guang Tian ◽  
De Xin Li ◽  
Li Xia Cai ◽  
Tian Dong ◽  
Xiao Juan Han

As one of main clean energies, wind power has been developed fast, but the fluctuations of active power at a wind farm is a huge challenge for the grid system, thus it is essential for wind farm connected into grid to detection the active power. This paper studied control strategies and detection methods of the active power at a wind farm. Simulation results showed the effective detection of active power at a wind farm can improve the characteristics of the grid and the ability of wind farm to regulate the grid and increase the scheduled ability of wind farm.


Sign in / Sign up

Export Citation Format

Share Document