scholarly journals PD-computed torque control for an autonomous airship

Author(s):  
Y. Meddahi ◽  
K. Zemalache Meguenni

For the trajectory following problem of an airship, the standard computed torque control law is shown to be robust with respect to unknown dynamics by judiciously choosing the feedback gains and the estimates of the nonlinear dynamics. In the first part of this paper, kinematics and dynamics modeling of the airships is presented. Euler angles and parameters are used in the formulation of this model and the technique of Computed Torque control is introduced. In the second part of the paper, we develop a methodology of control that allows the airship to accomplish a prospecting mission of an environment, as the follow-up of a trajectory by the simulation who results show that Computed Torque control method is suitable for airships.

Author(s):  
Y. Meddahi ◽  
K. Zemalache Meguenni ◽  
H. Aoued

<p>This paper work focused on the study of the nonlinear computed torque<br />control of a quadrotor helicopter. In order to model the dynamic of the<br />vehicles, kinematics and dynamics modeling of the X4 is presented. Euler<br />angles and parameters are used in the formulation of this model and the<br />technique of Computed Torque control is introduced. In the second part of<br />the paper, we develop a methodology of control that allows the quadrotor to<br />accomplish a prospecting mission of an environment, as the follow-up of a<br />trajectory by the simulation. Results show that Computed Torque control<br />method is suitable for X4.</p>


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Xiaogang Song ◽  
Yongjie Zhao ◽  
Chengwei Chen ◽  
Liang’an Zhang ◽  
Xinjian Lu

SUMMARY In this paper, an online self-gain tuning method of a PD computed torque control (CTC) is used for a 3UPS-PS parallel robot. The CTC is applied to the 3UPS-PS parallel robot based on the robot dynamic model which is established via a virtual work principle. The control system of the robot comprises a nonlinear feed-forward loop and a PD control feedback loop. To implement real-time online self-gain tuning, an adjustment method based on the genetic algorithm (GA) is proposed. Compared with the traditional CTC, the simulation results indicate that the control algorithm proposed in this study can not only enhance the anti-interference ability of the system but also improve the trajectory tracking speed and the accuracy of the 3UPS-PS parallel robot.


2021 ◽  
pp. 1-9
Author(s):  
G. Perumalsamy ◽  
Deepak Kumar ◽  
Joel Jose ◽  
S. Joseph Winston ◽  
S. Murugan

2011 ◽  
Vol 225-226 ◽  
pp. 978-981
Author(s):  
Bing Shao ◽  
En Tao Yuan ◽  
Zhong Hai Yu

Lie groups and Lie algebras are used to research the dynamics and computed torque law control of free flying space robot systems. First the adjoint transformations and adjoint operators of Lie groups and Lie algebras are discussed. Then the free flying base systems are transformed to fixed base systems. The inverse dynamics and forward dynamics are described with Lie groups and Lie algebras. The computed torque control law is used to simulate with the results of dynamics. The simulation results show that with the method the dynamical simulation problems of space robot can be solved quickly and efficiently. This built the foundation of real-time control based on dynamics. The computed torque control law has good performance.


Author(s):  
Sahand Sabet ◽  
Mohammad Poursina

Considering uncertainty is inarguably a crucial aspect of dynamic analysis, design, and control of a mechanical system. When it comes to multibody problems, the effect of uncertainty in the system’s parameters and excitations becomes even more significant due to the accumulation of inaccuracies. For this reason, this paper presents a detailed research on the use of the Polynomial Chaos Expansion (PCE) method for the control of nondeterministic multibody systems. PCE is essentially a way to compactly represent random variables. In this scheme, each stochastic response output and random input is projected onto the space of appropriate independent orthogonal polynomial basis functions. In the field of robotics, a required task is to force robotic arms to follow designated paths. Controlling such systems usually leads to difficulties since the dynamic equations of multibody problems are highly nonlinear. Computed Torque Control Law (CTCL) is able to overcome these difficulties by using feedback linearization to evaluate the required torque/force at any time to make the system follow a trajectory. In this paper, a mathematical framework is introduced to apply the Computed Torque Control Law to a multibody system with uncertainty. Surprisingly, it is shown that using this control scheme, uncertainty in geometry does not affect the closed-loop equations of controlled systems. Both the intrusive PCE method and the Monte Carlo approach are used to control a fully actuated two-link planar elbow arm where each link is required to follow a specified path. Lastly, a comparison of the time efficiency and accuracy between the traditionally used Monte Carlo method and the intrusive PCE is presented. The results indicate that the intrusive PCE approach can provide better accuracy with much less computation time than the Monte Carlo method.


1995 ◽  
Vol 117 (1) ◽  
pp. 31-36 ◽  
Author(s):  
I. M. M. Lammerts ◽  
F. E. Veldpaus ◽  
M. J. G. Van de Molengraft ◽  
J. J. Kok

This paper presents a motion control technique for flexible robots and manipulators. It takes into account both joint and link flexibility and can be applied in adaptive form if robot parameters are unknown. It solves the main problems that are related to the fact that the number of degrees of freedom exceeds both the number of actuators and the number of output variables. The proposed method results in trajectory tracking while all state variables remain bounded. Global, asymptotic stability is ensured for all values of the stiffnesses of joints and links. To show the characteristics of the proposed control law, some simulation results are presented.


Author(s):  
La´szlo´ L. Kova´cs ◽  
Jo´zsef Ko¨vecses ◽  
Ambrus Zelei ◽  
La´szlo´ Bencsik ◽  
Ga´bor Ste´pan

This paper aims to generalize the computed torque control method for underactuated systems which are modeled by a non-minimum set of generalized coordinates subjected to geometric constraints. The control task of the underactuated robot is defined in the form of servo constraint equations that have the same number as the number of independent control inputs. A PD controller is synthesized based on projecting the equations of motion into the nullspace of the distribution matrix of the actuator forces/torques. The results are demonstrated by numerical simulation and experiments conducted on a two degrees-of-freedom device.


2021 ◽  
Vol 17 (3) ◽  
pp. 22-28
Author(s):  
Maryam Sadeq Ahmed ◽  
Ali Hussien M Mary ◽  
Hisham Hassan Jasim

This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem.  The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.


2020 ◽  
Vol 18 (2) ◽  
pp. 269
Author(s):  
Jelena Vidaković ◽  
Vladimir Kvrgić ◽  
Mihailo Lazarević ◽  
Pavle Stepanić

A development of a robot control system is a highly complex task due to nonlinear dynamic coupling between the robot links. Advanced robot control strategies often entail difficulties in implementation, and prospective benefits of their application need to be analyzed using simulation techniques. Computed torque control (CTC) is a feedforward control method used for tracking of robot’s time-varying trajectories in the presence of varying loads. For the implementation of CTC, the inverse dynamics model of the robot manipulator has to be developed. In this paper, the addition of CTC compensator to the feedback controller is considered for a Spatial disorientation trainer (SDT). This pilot training system is modeled as a 4DoF robot manipulator with revolute joints. For the designed mechanical structure, chosen actuators and considered motion of the SDT, CTC-based control system performance is compared with the traditional speed PI controller using the realistic simulation model. The simulation results, which showed significant improvement in the trajectory tracking for the designed SDT, can be used for the control system design purpose as well as within mechanical design verification.


Sign in / Sign up

Export Citation Format

Share Document