Environmental Quality Analysis as An Environmental Restoration Evaluation Effor in Jajang Village River Basin District Poncokusumo Malang

2018 ◽  
Vol 1 (2) ◽  
2021 ◽  
Author(s):  
Yangyang Wang ◽  
Wu Ma ◽  
Lenny D Farlee ◽  
Elizabeth A Jackson ◽  
Guofan Shao ◽  
...  

Abstract Stand improvement (SI) has been widely accepted as an effective forest management tool. Yet most studies on its economic feasibility for nonindustrial private forest (NIPF) landowners are outdated and focus on the single stand level. The objective of this study was to conduct an economic assessment of SI’s effects and feasibility in hardwood stands for a case study in the White River Basin in Indiana. It is shown that SI could make these forests more productive and sustainable than the prevalent “hands-off” practice by enhancing the timber value of the residual stand (TV), generating regular timber income, and to some degree, reversing the decline in oak dominance. On average, a 25% increment in the TV could be achieved. Although costly for some NIPFs, once combined with voluntary financial incentive programs, SI could meet landowners’ demands for low-cost, high-return investment options. In particular, participation in the Environmental Quality Incentive Program could, on average, increase the net present value of timber income from thinning activities by nearly $1,600 per hectare over the course of 30 years. The spatial analysis revealed that there existed considerable spatial heterogeneity in SI benefits and impacts, suggesting that public incentive programs should be spatially targeted to achieve greater efficiency. Study Implications This study found that stand improvement (SI) could significantly improve the timber value of forestland in the central hardwood region. Participation in voluntary conservation programs, such as the Environmental Quality Incentive Program, could alleviate part of the SI cost thus making it an attractive investment opportunity for private landowners. For the study region, the White River Basin in Indiana, the results suggested that there existed substantial variations in SI’s effectiveness across space. This implied that program administrators of voluntary incentives could improve the efficiency of public funds allocation by considering this spatial variation when evaluating landowners’ applications for incentives.


2017 ◽  
Vol 20 (2) ◽  
pp. 121-138 ◽  
Author(s):  
MARÍA GABRIELA MERLINSKY

ABSTRACT The purpose of this work is to analyze the way in which various collective actions have given way to new public deliberation arenas around the environmental issue in Argentina. On the basis of the results of a study on the ‘‘conflict over the pulp mills on the Uruguay River” and the ‘‘conflict over the environmental restoration of the Matanza-Riachuelo River basin,” our intention is to delve into a theoretical perspective that takes into account the productivity of these events and to analyze different forms of contagion among public arenas. By presenting the results of the case studies, we will refer to the territorial productivity of environmental conflicts.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasad M. Pujar ◽  
Harish H. Kenchannavar ◽  
Raviraj M. Kulkarni ◽  
Umakant P. Kulkarni

AbstractIn this paper, an attempt has been made to develop a statistical model based on Internet of Things (IoT) for water quality analysis of river Krishna using different water quality parameters such as pH, conductivity, dissolved oxygen, temperature, biochemical oxygen demand, total dissolved solids and conductivity. These parameters are very important to assess the water quality of the river. The water quality data were collected from six stations of river Krishna in the state of Karnataka. River Krishna is the fourth largest river in India with approximately 1400 km of length and flows from its origin toward Bay of Bengal. In our study, we have considered only stretch of river Krishna flowing in state of Karnataka, i.e., length of about 483 km. In recent years, the mineral-rich river basin is subjected to rapid industrialization, thus polluting the river basin. The river water is bound to get polluted from various pollutants such as the urban waste water, agricultural waste and industrial waste, thus making it unusable for anthropogenic activities. The traditional manual technique that is under use is a very slow process. It requires staff to collect the water samples from the site and take them to the laboratory and then perform the analysis on various water parameters which is costly and time-consuming process. The timely information about water quality is thus unavailable to the people in the river basin area. This creates a perfect opportunity for swift real-time water quality check through analysis of water samples collected from the river Krishna. IoT is one of the ways with which real-time monitoring of water quality of river Krishna can be done in quick time. In this paper, we have emphasized on IoT-based water quality monitoring by applying the statistical analysis for the data collected from the river Krishna. One-way analysis of variance (ANOVA) and two-way ANOVA were applied for the data collected, and found that one-way ANOVA was more effective in carrying out water quality analysis. The hypotheses that are drawn using ANOVA were used for water quality analysis. Further, these analyses can be used to train the IoT system so that it can take the decision whenever there is abnormal change in the reading of any of the water quality parameters.


2020 ◽  
Vol 12 (2) ◽  
pp. 482 ◽  
Author(s):  
Francesco Mancini ◽  
Fabio Nardecchia ◽  
Daniele Groppi ◽  
Francesco Ruperto ◽  
Carlo Romeo

The energy refurbishment of the existing building heritage is one of the pillars of Italian energy policy. Aiming for energy efficiency and energy saving in end uses, there are wide and diversified improvement strategies, which include interventions on the building envelope and Heating, Ventilation, and Air Conditioning (HVAC) systems, with the introduction of renewable energy sources. The research aims at evaluating the building energy consumptions and Indoor Environmental Quality (IEQ), varying the airflow rates handled by the HVAC system. A Case Study (the Aula Magna of a university building) is analysed; an in-situ monitoring campaign was carried out to evaluate the trend of some environmental parameters that are considered to be significant when varying the external airflow rates handled by the HVAC system. Additionally, dynamic simulations were carried out, with the aim of evaluating the energy savings coming from the airflow rates reduction. The results of this case study highlight the opportunity to achieve significant energy savings, with only slight variations in IEQ; a 50% reduction in airflow rate would decrease energy consumption by up to 45.2%, while increasing the carbon dioxide concentration from 545 ppm to 655 ppm, while the Particulate Matter and Total Volatile Organic Compounds increase is insignificant.


2019 ◽  
Vol 38 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Joe P. Pecorelli ◽  
Kirsty H. Macphie ◽  
Charlotte Hebditch ◽  
Darry R. J. Clifton-Dey ◽  
Ian Thornhill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document