Biophysical tools to assess the interaction of PF4 with polyanions

2016 ◽  
Vol 116 (11) ◽  
pp. 783-791 ◽  
Author(s):  
Mihaela Delcea ◽  
Andreas Greinacher

SummaryThe antigen in heparin-induced thrombocytopenia (HIT) is expressed on platelet factor 4 (PF4) when PF4 complexes with polyanions. In recent years, biophysical tools (e. g. circular dichroism spectroscopy, atomic force microscopy, isothermal titration calorimetry, x-ray crystallography, electron microscopy) have gained an important role to complement immunological and functional assays for better understanding the interaction of heparin with PF4. This allowed identification of those features that make PF4 immunogenic (e. g. a certain conformational change induced by the polyanion, a threshold energy of the complexes, the existence of multimeric complexes, a certain number of bonds formed by PF4 with the polyanion) and to characterize the morphology and thermal stability of complexes formed by the protein with polyanions. These findings and methods can now be applied to test new drugs for their potential to induce the HIT-like adverse drug effect by preclinical in vitro testing. The methods and techniques applied to characterize the antigen in HIT may also be helpful to better understand the mechanisms underlying other antibody-mediated disorders in thrombosis and hemostasis (e. g. acquired hemophilia, thrombotic thrombocytopenic purpura). Furthermore, understanding the mechanisms making the endogenous protein PF4 immunogenic may help to understand the mechanisms underlying other autoimmune disorders.

2018 ◽  
Author(s):  
Erika M. Lisabeth ◽  
Dylan Kahl ◽  
Indiwari Gopallawa ◽  
Sarah E. Haynes ◽  
Sean A. Misek ◽  
...  

AbstractA series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including melanoma metastasis and bleomycin-induced fibrosis. Although these compounds are efficacious, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent co-transcription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF-dependent SRE.L Luciferase activation. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-p induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co-crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.


2019 ◽  
Vol 16 (150) ◽  
pp. 20180675 ◽  
Author(s):  
Shun Zhang ◽  
Danielle Skinner ◽  
Prateek Joshi ◽  
Ernesto Criado-Hidalgo ◽  
Yi-Ting Yeh ◽  
...  

Schistosomiasis is a chronic and morbid disease of poverty affecting approximately 200 million people worldwide. Mature schistosome flatworms wander in the host's hepatic portal and mesenteric venous system where they encounter a range of blood flow conditions and geometrical confinement. However, the mechanisms that support schistosome locomotion and underlie the pathogen's adaptation to its physical environment are largely unknown. By combining microfabrication and traction force microscopy, we developed various in vitro assays to quantify the mechanics of locomotion of adult male Schistosoma mansoni in different physiologically relevant conditions. We show that in unconfined settings, the parasite undergoes two-anchor marching mediated by the coordinated action of its oral and ventral suckers. This mode of locomotion is maintained when the worm faces an external flow, to which it responds by adjusting the strength of its suckers. In geometrically confined conditions, S. mansoni switches to a different crawling modality by generating retrograde peristaltic waves along its body, a mechanism shared with terrestrial and marine worms. However, while the surface of most worms has backward-pointing bristles that rectify peristaltic waves and facilitate forward locomotion, S. mansoni has isotropically oriented tubercles. This requires tight coordination between muscle contraction and substrate friction but gives S. mansoni the ability to reverse its direction of locomotion without turning its body, which is likely advantageous to manoeuvre in narrow-bore vessels. We show that the parasite can also coordinate the action of its suckers with its peristaltic body contractions to increase crawling speed. Throughout this study, we report on a number of biomechanical parameters to quantify the motility of adult schistosomes (e.g. sucker grabbing strength, the rate of detachment under flow, peristaltic wave properties and traction stresses). The new series of in vitro assays make it possible to quantify key phenotypical aspects of S. mansoni motility that could guide the discovery of new drugs to treat schistosomiasis.


2019 ◽  
Author(s):  
Shun Zhang ◽  
Danielle Skinner ◽  
Prateek Joshi ◽  
Ernesto Criado-Hidalgo ◽  
Yi-Ting Yeh ◽  
...  

AbstractSchistosomiasis is a chronic and morbid disease of poverty affecting approximately 200 million people worldwide. Mature schistosome flatworms wander in the host’s hepatic portal and mesenteric venous system where they encounter a range of blood flow conditions and geometrical confinement. However, the mechanisms that support schistosome locomotion and underlie the pathogen’s adaptation to its physical environment are largely unknown. By combining microfabrication and traction force microscopy, we developed various in vitro assays to quantify the mechanics of locomotion of adult male S. mansoni in different physiologically relevant conditions. We show that in unconfined settings, the parasite undergoes two-anchor marching mediated by the coordinated action of its oral and ventral suckers. This mode of locomotion is maintained when the worm faces an external flow, to which it responds by adjusting the strength of its suckers. In geometrically confined conditions, S. mansoni switches to a different crawling modality by generating retrograde peristaltic waves along its body, a mechanism shared with terrestrial and marine worms. But while the surface of most worms has backward-pointing bristles that rectify peristaltic waves and facilitate forward locomotion, S mansoni has isotropically oriented tubercles. This requires tight coordination between muscle contraction and substrate friction but confers S. mansoni the ability to reverse its direction of locomotion without turning its body, which is likely advantageous to maneuver in narrow bore vessels. We show that the parasite can also coordinate the action of its suckers with its peristaltic body contractions to increase crawling speed. Throughout this study, we report on a number of biomechanical parameters to quantify the motility of adult schistosomes (e.g. sucker grabbing strength, rate of detachment under flow, peristaltic wave properties and traction stresses). The new series of in vitro assays make it possible to quantify key phenotypical aspects of S. mansoni motility that could guide the discovery of new drugs to treat schistosomiasis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pablo V. M. Reis ◽  
Vinícius M. Lima ◽  
Kelton R. Souza ◽  
Gabriele A. Cardoso ◽  
Marcella N. Melo-Braga ◽  
...  

Superbugs are a public health problem, increasing the need of new drugs and strategies to combat them. Our group has previously identified LyeTxI, an antimicrobial peptide isolated from Lycosa erythrognatha spider venom. From LyeTxI, we synthesized and characterized a derived peptide named LyeTxI-b, which has shown significant in vitro and in vivo activity. In this work, we elucidate the interaction of LyeTxI-b with artificial membranes as well as its effects on resistant strains of bacteria in planktonic conditions or biofilms. Isothermal titration calorimetry revealed that LyeTxI-b interacts more rapidly and with higher intensity with artificial vesicles, showing higher affinity to anionic vesicles, when compared to synthetic LyeTxI. In calcein experiments, LyeTxI-b caused greater levels of vesicle cleavage. Both peptides showed antibacterial activity at concentrations of μmol L−1 against 12 different clinically isolated strains, in planktonic conditions, in a concentration-dependent manner. Furthermore, both peptides elicited a dose-dependent production of reactive oxygen species in methicillin-resistant Staphylococcus aureus. In S. aureus biofilm assay, LyeTxI-b was more potent than LyeTxI. However, none of these peptides reduced Escherichia coli biofilms. Our results show LyeTxI-b as a promising drug against clinically resistant strains, being a template for developing new antibiotics.


1991 ◽  
Vol 66 (02) ◽  
pp. 213-217 ◽  
Author(s):  
Arthur P Bode ◽  
William J Castellani ◽  
Edna D Hodges ◽  
Susan Yelverton

SummaryThe effect of lysed platelets on the activated coagulation time (ACT) was studied in heparinized whole blood during titration with protamine. Frozen-thawed washed platelet suspension, or a chromatography fraction thereof, or autologous frozen-thawed platelet-rich plasma was added in various dilutions to freshly drawn blood anticoagulated with 3,000 USP units/1 heparin. After a 10 min incubation, the amount of protamine needed to restore the ACT to baseline ("protamine titration dose") was determined. We found that the protamine titration dose decreased in proportion to the amount of lysed platelet material added; expressed as a percentage of the total number of platelets present, each unit increase in lysed platelets produced a 1.7% ±0.8 (SD) reduction in the protamine dose needed to normalize the ACT. A heparin activity assay showed that this effect was not due to antiheparin activity of lysed platelets such as platelet factor 4 (PF4). Our data indicate that the procoagulant activity of platelet membranes reduced the sensitivity of the ACT to heparin. These findings suggest that membranous platelet microparticles may cause an inaccurate calculation, based on the ACT, of a protamine dose to reverse heparin anticoagulation in cardiopulmonary bypass procedures.


1977 ◽  
Vol 37 (01) ◽  
pp. 073-080 ◽  
Author(s):  
Knut Gjesdal ◽  
Duncan S. Pepper

SummaryHuman platelet factor 4 (PF-4) showed a reaction of complete identity with PF-4 from Macaca mulatta when tested against rabbit anti-human-PF-4. Such immunoglobulin was used for quantitative precipitation of in vivo labelled PF-4 in monkey serum. The results suggest that the active protein had an intra-platelet half-life of about 21 hours. In vitro 125I-labelled human PF-4 was injected intravenously into two monkeys and isolated by immuno-precipita-tion from platelet-poor plasma and from platelets disrupted after gel-filtration. Plasma PF-4 was found to have a half-life of 7 to 11 hours. Some of the labelled PF-4 was associated with platelets and this fraction had a rapid initial disappearance rate and a subsequent half-life close to that of plasma PF-4. The results are compatible with the hypothesis that granular PF-4 belongs to a separate compartment, whereas membrane-bound PF-4 and plasma PF-4 may interchange.


1976 ◽  
Vol 36 (01) ◽  
pp. 221-229 ◽  
Author(s):  
Charles A. Schiffer ◽  
Caroline L. Whitaker ◽  
Morton Schmukler ◽  
Joseph Aisner ◽  
Steven L. Hilbert

SummaryAlthough dimethyl sulfoxide (DMSO) has been used extensively as a cryopreservative for platelets there are few studies dealing with the effect of DMSO on platelet function. Using techniques similar to those employed in platelet cryopreservation platelets were incubated with final concentrations of 2-10% DMSO at 25° C. After exposure to 5 and 10% DMSO platelets remained discoid and electron micrographs revealed no structural abnormalities. There was no significant change in platelet count. In terms of injury to platelet membranes, there was no increased availability of platelet factor-3 or leakage of nucleotides, 5 hydroxytryptamine (5HT) or glycosidases with final DMSO concentrations of 2.5, 5 and 10% DMSO. Thrombin stimulated nucleotide and 5HT release was reduced by 10% DMSO. Impairment of thrombin induced glycosidase release was noted at lower DMSO concentrations and was dose related. Similarly, aggregation to ADP was progressively impaired at DMSO concentrations from 1-5% and was dose related. After the platelets exposed to DMSO were washed, however, aggregation and release returned to control values. Platelet aggregation by epinephrine was also inhibited by DMSO and this could not be corrected by washing the platelets. DMSO-plasma solutions are hypertonic but only minimal increases in platelet volume (at 10% DMSO) could be detected. Shrinkage of platelets was seen with hypertonic solutions of sodium chloride or sucrose suggesting that the rapid transmembrane passage of DMSO prevented significant shifts of water. These studies demonstrate that there are minimal irreversible alterations in in vitro platelet function after short-term exposure to DMSO.


1981 ◽  
Vol 45 (01) ◽  
pp. 038-042 ◽  
Author(s):  
M E Pogliani ◽  
R Fantasia ◽  
G Lambertenghi-Deliliers ◽  
E Cofrancesco

SummaryThe influence of Daunorubicin on some platelet functions in vitro was investigated, using different concentrations of the drug (0.01-0.02-0.04 μg/ml). Daunorubicin was shown to inhibit Collagen and Thrombin induced platelet aggregation and the intensity of inhibition depended on both drug concentration and the time of preincubation.Daunorubicin was also shown to inhibit the release reaction, the platelet prostaglandin pathway and the availability platelet factor 3; the drug at concentrations for clinical use does not damage the platelet membrane, as is the case with the freezing and thawing test, in platelet uptake of 14C-serotonin and as confirmed by the electron microscope. When very high doses (0.16 mg) of Daunorubicin are used, lysis of the platelets can be observed and this is confirmed under the electron microscope by the presence of empty platelets with fractures at the level of the cytoplasmic membrane.Finally, Daunorubicin causes irreversible inhibition of reptilase clot-retraction, even if this is less severe than with Vincristine. Working with gel-filtered platelets, it would appear that the inhibition exercised by the drug on platelet reactions is not caused through modifications in Ca++ metabolism.The authors suggest that Daunorubicin, at the dosages used clinically, induces in vitro thrombocytopathy without damaging the cellular membrane as confirmed by the electron microscope.This impairment of platelet functions could play a part in hemorrhagic diathesis observed during Daunorubicin therapy.


1985 ◽  
Vol 54 (04) ◽  
pp. 808-812 ◽  
Author(s):  
Ulf Berglund ◽  
Henning von Schenck ◽  
Lars Wallentin

SummaryThe effects of ticlopidine (T) (500 mg daily) on platelet function were investigated in a double-blind placebo-controlled study in 38 middle-aged men with stable incapacitating angina pectoris. The in vitro platelet reactivity to aggregating agents, the platelet sensitivity to prostacyclin and the plasma levels of platelet specific proteins and fibrinogen were determined before and after 4 and 8 weeks of treatment. T exerted a potent inhibitory effect on ADP- and collagen-induced platelet aggregation. The effect of T was proportional to the pretreatment reactivity to ADP and collagen. The inhibitory effect of T on the epinephrine response was less pronounced. The plasma levels of beta-thromboglobulin, platelet factor 4 and fibrinogen were not influenced by T. The platelet inhibition of prostacyclin was potentiated by T, and it was demonstrated that T and prostacyclin had synergistic inhibitory effects on platelet aggregation.


1964 ◽  
Vol 12 (02) ◽  
pp. 471-483 ◽  
Author(s):  
F Rodríguez-Erdmann

SummaryThe rôle of the clotting system in the pathogenesis of the generalized Shwartzman reaction (gSr) has been stressed in recent years. The clotting system is activated ubiquitously and as a result of it, fibrin is deposited intravascularly and a haemorrhagic diathesis develops. Evidence is presented herein, that endotoxin does not activate purified prothrombin, nor does endotoxin influence the convertion of prothrombin when it is activated in the presence of purified platelet-factor 3 (or caephalin) purified Ac-G (factor V) and Ca-ions.The trigger mechanism of the gSr also seems to be in the so-called prephase of clotting mechanism. Data are presented, which show that endotoxin activates the Hageman factor in vitro. The importance of this clotting factor and of platelet-factor 3 is discussed. Also the rôle played by the RES and cardiodynamic and vascular components are taken in consideration in the discussion.


Sign in / Sign up

Export Citation Format

Share Document