scholarly journals Platelet Activation With Unfractionated Heparin at Therapeutic Concentrations and Comparisons With a Low-Molecular-Weight Heparin and With a Direct Thrombin Inhibitor

Circulation ◽  
1998 ◽  
Vol 97 (3) ◽  
pp. 251-256 ◽  
Author(s):  
Zihui Xiao ◽  
Pierre Théroux
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1548-1548
Author(s):  
Paula M Jacobi ◽  
Sharniece Covill ◽  
Andrew S Podd ◽  
Kenneth D Friedman ◽  
Sandra L Haberichter

Abstract Dabigatran is a potent, competitive, and reversible direct thrombin inhibitor, that binds to the active site of thrombin, inhibiting both free and clot-bound thrombin. It is the active form of dabigatran etexilate, which is a low molecular weight prodrug metabolized to its active form after oral administration. Although patients on therapeutic doses of dabigatran do not require routine coagulation monitoring due to its dose dependent and predictable pharmacological profile, there may be situations in which it may be beneficial to be able to accurately measure the degree of anticoagulation (ie. urgent surgery, severe bleeding, thrombosis despite treatment, overdose, bridging with other anticoagulants, patients with a high risk of dabigatran accumulation or potential drug interactions). Accordingly, we developed and validated a chromogenic direct thrombin inhibitor assay on the ACL TOP 700 automated hemostasis analyzer for quantifying dabigatran levels in human plasma. Our test principle was based on the in vitro thrombin inhibition by dabigatran, in which excess thrombin was added to the plasma sample, the thrombin in the sample was neutralized in proportion to the amount of dabigatran, and the residual thrombin hydrolyzed the chromogenic substrate releasing pNA which was measured photometrically at 405 nm on the ACL TOP 700. This assay was calibrated with purchased dabigatran calibration samples (Aniara). Each calibration curve consisted of five points, used a 3rd order polynomial curve fit, and was performed each time an assay was run. For all runs, an r2 of 1.0 was observed and all calibrators demonstrated an acceptable accuracy and precision (± 10% from assigned value for samples ≥ 100 ng/mL or < 10 ng/mL of assigned values for all other samples). Validation of this dabigatran level assay for accuracy, intra- and inter-assay precision, analytical specificity, analytical sensitivity, analyte stability, and robustness was completed and reportable result ranges established. To evaluate accuracy, three plasma samples containing dabigatran in the range of expected concentrations (high, medium, low) were compared to the value determined by mass spectrometry. Intra- and inter-assay precision was determined by analyzing these 3 samples over multiple assay runs spanning multiple days. All determined values were within 15% of the assigned values for samples ≥ 100ng/mL and within 10ng/mL of the assigned values for all other samples. Analytical specificity was confirmed by running sample pairs (plasma/serum, citrate/EDTA, hemolyzed/non-hemolyzed, icteric/non-icteric, lipemic/cleared-lipemic, 1 U/mL unfractionated heparin and 2 U/mL low molecular weight heparin-containing samples). Only the serum sample resulted in >10% difference from the standard plasma, indicating assay interference. Assay results were not affected by unfractionated heparin up to 1 U/mL and low molecular weight heparin up to 2 U/mL. Analytical sensitivity was established by assaying normal plasma containing no or low levels of dabigatran. The limit of blank was determined to be 3 ng/mL, limit of detection 10 ng/mL, and limit of quantitation (LoQ) 20 ng/mL. Analyte stability studies established samples thawed and refrozen up to 2 times were acceptable. Assay robustness was determined to be acceptable. The reportable range was determined to be 20-900 ng/mL based on the calibration curve and LoQ. In summary, we have developed and validated an accurate, precise, sensitive and robust chromogenic assay on the ACL TOP 700 for the determination of dabigatran concentration in human plasma. This assay may prove useful in certain clinical circumstances (urgent surgery, severe bleeding, or thrombosis despite treatment) for the assessment of anticoagulation status. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 85 (06) ◽  
pp. 947-949 ◽  
Author(s):  
Theodore Warkentin

SummaryFew topics in medicine rival heparin-induced thrombocytopenia (HIT) for the unexpected twists and turns enough to rival the plot of many a mystery novel. The underlying theme- anticoagulant-induced thrombosis- seems improbable, but is well-established: despite thrombocytopenia, patients rarely bleed spontaneously or even exhibit petechiae (1); rather, thrombosis develops in 30-75% of patients with HIT, depending upon the clinical situation, and in proportions far greater than expected based on the original reason for receiving heparin (2-4).But even beyond this fundamental contradiction, there exists for the unwary and uninformed practitioner several counterintuitive treatment paradoxes. One is the dichotomous nature of low-molecular-weight heparin (LMWH) respecting prevention and treatment of HIT. LMWH is far less likely to cause HIT than standard, unfractionated heparin (4, 5). Yet, for the patient with acute HIT caused by unfractionated heparin, LMWH is contraindicated (6, 7). The reason: LMWH preparations contain some heparin molecules with 12 or greater saccharide units, which are sufficiently long to bind platelet factor 4 (PF4), creating the multimolecular complexes bearing the HIT antigens. Consequently, ongoing platelet activation, thrombocytopenia, and thrombosis occur in many patients so treated (8).


2000 ◽  
Vol 84 (11) ◽  
pp. 858-864 ◽  
Author(s):  
Tymen Keller ◽  
Bart Biemond ◽  
Ron Peters ◽  
Wilfried Hornberger ◽  
Harry Büller ◽  
...  

SummaryCurrent antithrombotic compounds have several limitations in clinical practice. The present study was designed to investigate a novel orally available direct thrombin inhibitor, BSF 208791. Intravenous administration of BSF 208791 showed superior antithrombotic properties as compared with Polyethylenglycol-Hirudin (PEG-Hirudin) and low molecular weight heparin (LMWH) in a model of venous thrombosis in rabbits. The thrombus growth was 22%, 30%, 37% and 50% after BSF 208791, PEG-Hirudin, LMWH, and saline administration, respectively. Moreover, bleeding time was less affected after administration of BSF 208791 as compared with PEG-Hirudin. The oral administration of BSF 208791 resulted in adequate bioavailability and significantly reduced venous thrombus growth to 36% as compared with 60% in the saline treated rabbits. The antithrombotic effect of BSF 208791 appears to be superior to PEG-Hirudin and LMWH without affecting the bleeding time. BSF 208791 is an orally available agent that might be a promising candidate for future antithrombotic therapy.


1993 ◽  
Vol 70 (06) ◽  
pp. 0909-0914 ◽  
Author(s):  

SummaryFibrin D-Dimer (D-Di), prothrombin activation fragment (F 1+2) and thrombin-antithrombin III complexes (TAT) were measured using ELISA procedures in the plasma of patients with an acute deep venous thrombosis (DVT), at presentation and on days 2, 6 and 10 after initiation of heparin treatment. Patients were randomly allocated into two treatment groups: 44 patients received adapted doses of continuous intravenous unfractionated heparin (UH) whereas 47 received 1 mg/kg every twelve hours of a low molecular weight heparin (enoxaparin) subcutaneously. A phlebography and a perfusion lung scan were performed before inclusion and on day 10. Failure of therapy (n = 9) was defined by venogram worsening or confirmed pulmonary embolism. Improvement (n = 44) or stationary state (n = 38) were defined by venogram evolution in the absence of new leg scan defects.At presentation, D-Di, F 1 + 2 and TAT were above cut-off values in 97, 66 and 89% of patients respectively. D-Di levels correlated with the extent of venous thrombosis whereas TAT and F 1 + 2 did not. Mean levels of D-Di decreased sharply during the first days of treatment but were still abnormal on day 10. A secondary increase of D-Di on days 6 or 10 by more than 3 μg/ml occurred in 4 of the 9 patients who developed a thromboembolic recurrence but in none of the 72 patients who had a more favorable outcome. F 1 + 2 and TAT time-courses were not related to clinical evolution. In the Enoxaparin group, there was no relationship between antifactor Xa activities and any biological markers. TAT and F 1 + 2 levels fell on day 2 and remained stable until day 10. In contrast, in the UH group, TAT and F 1 + 2 did not significantly decrease on day 2, probably due to a delay in dose adaptation, but they declined slowly until day 10.In conclusion, D-Di displays a higher sensitivity than F 1 + 2 or TAT for the diagnosis of D\T. D-Di, but not TAT or F 1 + 2, follow-up seems to be of potential value for early detection of recurrency. Hemostatic activation is controlled earlier by fixed doses of a low molecular weight heparin, irrespective of the plasma anti-factor Xa activities, than by unfractionated heparin at adapted doses.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1993 ◽  
Vol 70 (04) ◽  
pp. 625-630 ◽  
Author(s):  
Edward Young ◽  
Benilde Cosmi ◽  
Jeffrey Weitz ◽  
Jack Hirsh

SummaryThe non-specific binding of anticoagulantly-active heparin to plasma proteins may influence its anticoagulant effect. We used low affinity heparin (LAH) essentially devoid of anti-factor Xa activity to investigate the extent and possible mechanism of this non-specific binding. The addition of excess LAH to platelet-poor plasma containing a fixed amount of unfractionated heparin doubled the anti-factor Xa activity presumably because it displaces anticoagulantly-active heparin from plasma proteins. Although dextran sulfates of varying molecular weights also increased the anti-factor Xa activity, less sulfated heparin-like polysaccharides had no effect. These findings suggest that the ability to displace active heparin from plasma protein binding sites is related to charge and may be independent of molecular size. In contrast to its effect in plasma containing unfractionated heparin, there was little augmentation in anti-factor Xa activity when LAH was added to plasma containing low molecular weight heparin (LMWH), indicating that LMWH binds less to plasma proteins than unfractionated heparin. This concept is supported by studies comparing the anticoagulant activity of unfractionated heparin and LMWH in plasma with that in buffer containing antithrombin III. The anti-factor Xa activity of unfractionated heparin was 2-fold less in plasma than in the purified system. In contrast, LMWH had identical anti-factor Xa activity in both plasma and buffer, respectively. These findings may be clinically relevant because the recovered anti-factor Xa activity of unfractionated heparin was 33% lower in plasma from patients with suspected venous thrombosis than in plasma from healthy volunteers. The reduced heparin recovery in patient plasma reflects increased heparin binding to plasma proteins because the addition of LAH augmented the anti-factor Xa activity. In contrast to unfractionated heparin, there was complete recovery of LMWH added to patient plasma and little increase of anti-factor Xa activity after the addition of LAH. These findings may explain why LMWH gives a more predictable dose response than unfractionated heparin.


1997 ◽  
Vol 78 (05) ◽  
pp. 1404-1407 ◽  
Author(s):  
B I Eriksson ◽  
S Carlsson ◽  
M Halvarsson ◽  
B Risberg ◽  
C Mattsson

SummaryA sensitive thrombosis model with a high reproducibility was developed in the rat, utilizing stasis of the caval vein and a standardized surgical trauma as the only thrombogenic stimuli. Since no procoagulant substances were used, the results of the present study might be relevant in a clinical situation. The antithrombotic effect of two recently synthesized low-molecular-weight thrombin inhibitors have been compared to dalteparin, (Fragmin) a low-molecular-weight heparin fragment. Each compound was studied at 8 different doses with 10 rats in each group. On a gravimetric basis, the thrombin inhibitor melagatran was twice as potent as dalteparin (ED50 16 and 33 µ/kg per h, respectively). The second thrombin inhibitor, inogatran, had an intermediate effect, with an ED50 of 24 µLg/kg per h. No differences in antithrombotic effect were, however, found when the compounds were compared at anticoagulant equivalent doses (same APTT prolongation). A 50% reduction in the mean thrombus weight was obtained when APTT was prolonged to 1.2 to 1.3 times the pretreatment value.


Sign in / Sign up

Export Citation Format

Share Document