Response: How to Measure Blood Pressure Variability

Author(s):  
Giuseppe Mancia ◽  
Roberto Sega
2019 ◽  
Vol 2 (3) ◽  
pp. 206-214
Author(s):  
Putri Indes Oktabriani ◽  
Fuad Ughi ◽  
Aulia Arif Iskandar

The continuous blood pressure measurement research is widely known for helpingthe development of ambulatory blood pressure monitoring where it measures blood pressureevery 15 to 30 minutes throughout the day. The cuff is a problem for the patient withAmbulatory Blood Pressure Monitor. It can make a person feel uncomfortable and must staystill when the cuff starts to inflate. It is limiting and disturbing their daily activity when thedevice is starting to measure the blood pressure. Blood pressure measurement without cuff isbeing proposed in this research, called cuff-less blood pressure measurement. It will be based onPhotoplethysmography (PPG) and Electrocardiography (ECG) signal analysis. ECG (Lead 1,Lead 2, and Lead 3) with PPG signal produced from index finger on the left hand are comparedand analyzed. Then the relation of PPG and ECG signal and the optimum location for daily usecan be obtained. The optimum location will be based on the electrode’s position that producedthe optimum ECG lead Signal to measure blood pressure. Based on the result, PPG and ECGsignal have a linear relation with Blood Pressure Measurement and Lead 1 is more stable inproducing the ECG signal. The equation from Lead 1 appeared as one of the optimum equationsfor measuring Systolic Blood Pressure (SBP) or Diastolic Blood Pressure (DBP).


2014 ◽  
Vol 21 (6) ◽  
pp. 744-755 ◽  
Author(s):  
Christian Hocht ◽  
Julieta Del Mauro ◽  
Facundo Bertera ◽  
Carlos Taira

2019 ◽  
Vol 14 (5) ◽  
pp. 376-385 ◽  
Author(s):  
Lin Xu ◽  
Jiangming Huang ◽  
Zhe Zhang ◽  
Jian Qiu ◽  
Yan Guo ◽  
...  

Objective: The purpose of this study was to establish whether Triglycerides (TGs) are related to Blood Pressure (BP) variability and whether controlling TG levels leads to better BP variability management and prevents Cardiovascular Disease (CVD). Methods: In this study, we enrolled 106 hypertensive patients and 80 non-hypertensive patients. Pearson correlation and partial correlation analyses were used to define the relationships between TG levels and BP variability in all subjects. Patients with hypertension were divided into two subgroups according to TG level: Group A (TG<1.7 mmol/L) and Group B (TG>=1.7 mmol/L). The heterogeneity between the two subgroups was compared using t tests and covariance analysis. Results: TG levels and BP variability were significantly different between the hypertensive and non-hypertensive patients. Two-tailed Pearson correlation tests showed that TG levels are positively associated with many BP variability measures in all subjects. After reducing other confounding factors, the partial correlation analysis revealed that TG levels are still related to the Standard Deviation (SD), Coefficient of Variation (CV) of nighttime systolic blood pressure and CV of nighttime diastolic blood pressure, respectively (each p<0.05). In the subgroups, group A had a lower SD of nighttime Systolic Blood Pressure (SBP_night_SD; 11.39±3.80 and 13.39±4.16, p=0.011), CV of nighttime systolic blood pressure (SBP_night_CV; 0.09±0.03 and 0.11±0.03, p=0.014) and average real variability of nighttime systolic blood pressure (SBP_night_ARV; 10.99±3.98 and 12.6±3.95, p=0.024) compared with group B, even after adjusting for age and other lipid indicators. Conclusion: TG levels are significantly associated with BP variability and hypertriglyceridemia, which affects blood pressure variability before causing target organ damage.


Hypertension ◽  
1997 ◽  
Vol 30 (3) ◽  
pp. 603-610 ◽  
Author(s):  
Diana E. Ayala ◽  
Ramón C. Hermida ◽  
Artemio Mojón ◽  
José R. Fernández ◽  
Manuel Iglesias

Sign in / Sign up

Export Citation Format

Share Document