scholarly journals Rho/Rho-Kinase Pathway in Brain Stem Contributes to Blood Pressure Regulation via Sympathetic Nervous System

2003 ◽  
Vol 92 (12) ◽  
pp. 1337-1343 ◽  
Author(s):  
Koji Ito ◽  
Yoshitaka Hirooka ◽  
Koji Sakai ◽  
Takuya Kishi ◽  
Kozo Kaibuchi ◽  
...  
1993 ◽  
Vol 57 (supplementIV) ◽  
pp. 1154-1156
Author(s):  
Toshio Kushiro ◽  
Hirofumi Tomiyama ◽  
Katsuo Kanmatsuse ◽  
Nagao Kajiwara

2007 ◽  
Vol 113 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Niels P. Riksen ◽  
Marlies Bosselaar ◽  
Stephan J.L. Bakker ◽  
Robert J. Heine ◽  
Gerard A. Rongen ◽  
...  

Plasma NEFA (non-esterified fatty acid) concentrations are elevated in patients with obesity. In the present study we first aimed to provide an integral haemodynamic profile of elevated plasma NEFAs by the simultaneous assessment of blood pressure, pulse wave velocity, FBF (forearm blood flow) and sympathetic nervous system activity during acute elevation of NEFAs. Secondly, we hypothesized that NEFA-induced vasodilation is mediated by adenosine receptor stimulation. In a randomized cross-over trial in healthy subjects, Intralipid® was infused for 2 h to elevate plasma NEFAs. Glycerol was administered as the Control infusion. We assessed blood pressure, pulse wave velocity, FBF (using venous occlusion plethysmography) and sympathetic nervous system activity by measurement of noradrenaline and adrenaline. During the last 15 min of Intralipid®/Control infusion, the adenosine receptor antagonist caffeine (90 μg·min−1·dl−1) was administered into the brachial artery of the non-dominant arm. Compared with Control infusion, Intralipid® increased pulse wave velocity, SBP (systolic blood pressure) and pulse pressure, as well as FBF (from 1.8±0.2 to 2.7±0.6 and from 2.3±0.2 to 2.7±0.6 ml·min−1·dl−1 for Intralipid® compared with Control infusion; P<0.05, n=9). Although in a positive control study caffeine attenuated adenosine-induced forearm vasodilation (P<0.01, n=6), caffeine had no effect on Intralipid®-induced vasodilation (P=0.5). In conclusion, elevation of plasma NEFA levels increased pulse wave velocity, SBP and pulse pressure. FBF was also increased, either by baroreflex-mediated inhibition of the sympathetic nervous system or by a direct vasodilating effect of NEFAs. As the adenosine receptor antagonist caffeine could not antagonize the vasodilator response, this response is not mediated by adenosine receptor stimulation.


Hypertension ◽  
1999 ◽  
Vol 34 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Mario J. Carvalho ◽  
Anton H. van den Meiracker ◽  
Frans Boomsma ◽  
Joao Freitas ◽  
Arie J. Man in ‘t Veld ◽  
...  

1992 ◽  
Vol 262 (6) ◽  
pp. E763-E778 ◽  
Author(s):  
I. A. Reid

The renin-angiotensin system plays an important role in the regulation of arterial blood pressure and in the development of some forms of clinical and experimental hypertension. It is an important blood pressure control system in its own right but also interacts extensively with other blood pressure control systems, including the sympathetic nervous system and the baroreceptor reflexes. Angiotensin (ANG) II exerts several actions on the sympathetic nervous system. These include a central action to increase sympathetic outflow, stimulatory effects on sympathetic ganglia and the adrenal medulla, and actions at sympathetic nerve endings that serve to facilitate sympathetic neurotransmission. ANG II also interacts with baroreceptor reflexes. For example, it acts centrally to modulate the baroreflex control of heart rate, and this accounts for its ability to increase blood pressure without causing a reflex bradycardia. The physiological significance of these actions of ANG II is not fully understood. Most evidence indicates that the actions of ANG to enhance sympathetic activity do not contribute significantly to the pressor response to exogenous ANG II. On the other hand, there is considerable evidence that the actions of endogenous ANG II on the sympathetic nervous system enhance the cardiovascular responses elicited by activation of the sympathetic nervous system.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Bruno Igreja ◽  
Nuno M Pires ◽  
Lyndon C Wright ◽  
Patrío Soares-da-Silva

The sympathetic nervous system can alter blood pressure by modulation of cardiac output, peripheral vascular resistance and renal function. One strategy for controlling sympathetic nerve function is to reduce the biosynthesis of norepinephrine (NE) via inhibition of dopamine β-hydroxylase (DβH; EC 1.14.17.1 ), the enzyme that catalyses the conversion of dopamine (DA) to NE in sympathetic nerves. BIA 5-1058 is a reversible DβH inhibitor that decreases NE levels in peripheral sympathetically innervated tissues slowing down sympathetic nervous system drive, without effect in brain tissues. In freely moving SHR implanted with radio-telemetry transmitters single administration of BIA 5-1058 showed a dose (3, 30 and 100 mg/Kg) and time dependent effect on blood pressure with no significant effect on heart rate (HR) and total activity monitored over a 96-hour period. The maximum reduction on systolic blood pressure (SBP) was -10.8, -21.1 and -35.2 mmHg for 3, 30 and 100 mg/Kg, respectively and the maximum reduction on diastolic blood pressure (DBP) was -9.9, -18.4 and -24.8 mmHg for 3, 30 and 100 mg/Kg, respectively. The antihypertensive effect of BIA 5-1058 (30 mg/Kg) was further evaluated in combination with efficacious doses of well-known antihypertensive drugs, like the ACE inhibitor captopril, the AT1 receptor antagonist losartan, the diuretic hydrochlorothiazide, beta-blocker metoprolol, the alpha-1 receptor antagonist prazosin, and the calcium channel blocker diltiazem. All drugs were administered orally (single dose) in a cross-over design and the effect was monitored for 72 hours. The combination of BIA 5-1058 with any of the tested antihypertensive drugs caused a stronger and prolonged blood pressure decrease than any of the compounds alone.In conclusion, peripheral DβH inhibitors can be used, alone or in combination with others antihypertensive drugs, to reduce blood pressure.


Sign in / Sign up

Export Citation Format

Share Document