scholarly journals Targeting of a Novel Ca+2/Calmodulin-Dependent Protein Kinase II Is Essential for Extracellular Signal-Regulated Kinase–Mediated Signaling in Differentiated Smooth Muscle Cells

2005 ◽  
Vol 97 (6) ◽  
pp. 541-549 ◽  
Author(s):  
William A. Marganski ◽  
Samudra S. Gangopadhyay ◽  
Hyun-Dong Je ◽  
Cynthia Gallant ◽  
Kathleen G. Morgan
Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Dmitriy Atochin ◽  
Emmanuel Buys ◽  
Helen Swanson ◽  
Ana Dordea ◽  
Dai Fukumura ◽  
...  

The signaling pathways by which NO protects against stroke injury are mediated by cyclic guanosine monophosphate (cGMP) formation. However, the mechanisms of downstream signaling from cGMP to smooth muscle cells (SMC) remain incompletely understood. The cGMP-dependent protein kinase I (cGKI) is a key mediator of cGMP signaling. The goal of this study is to test the hypothesis that cGKI in SMC protects against stroke injury. Animals: We used the novel mouse line for highly efficient tamoxifen-inducible SMC-specific gene knockout, SMA-CreERT2, which expresses the CreERT2 recombinase under the control of the smooth muscle alpha-actin promoter (cGKI KO mice). The litter mate wild-type (WT) mice (no Cre gene) receiving the same tamoxifen treatment were used as control (cGKI WT) mice. Methods and Results: Mean blood pressure measured acutely from the common carotid artery under anesthesia (30% oxygen, 70% nitrous oxide and 1.5% isoflurane) was higher in cGKI KO mice (107±8 mmHg, Mean±SD) than in cGKI WT mice (95±1 mmHg, n=4/group, P<0.05). One hour of middle cerebral artery (MCA) occlusion by filament with 23 hours of reperfusion produced increased cerebral infarct volume (TTC staining, indirect calculation) in cGKI KO mice (123±39 mm3) as compared with cGKI WT (85±17 mm3, n=5/group, p< 0.05). Neurological deficit by 5 point scale was worse in cGKI KO mice (4.0 points) as compared with cGKI WT (2.4 points). Cerebral blood flow monitored by laser Doppler flowmetry above the core of the MCA territory indicated that reperfusion was less in cGKI KO mice than in cGKI WT mice, suggesting that cGKI mediates cerebrovascular SMC relaxation and protects against ischemic stroke. Vascular relaxation of mesenteric resistance arteries to acetylcholine, and the NO donor, NONOate after preconstriction with phenylephrine was dramatically impaired in cGKI KO mice. It suggests the importance of cGKI in the vascular SMC for NO-induced relaxation. In conclusion, stroke injury was more pronounced in cGKI SMC specific inducible conditional knockout mice than in cGKI WT mice, suggesting a protective role for cGKI in SMC against cerebral reperfusion injury. These studies identify the cGKI in cerebral vasculature as a potential target for therapies aimed at reducing stroke injury.


2005 ◽  
Vol 289 (4) ◽  
pp. C785-C793 ◽  
Author(s):  
Ida Najwer ◽  
Brenda Lilly

Smooth muscle-specific transcription is controlled by a multitude of transcriptional regulators that cooperate to drive expression in a temporospatial manner. Previous analysis of the cysteine-rich protein 1 ( CRP1/Csrp) gene revealed an intronic enhancer that is sufficient for expression in arterial smooth muscle cells and requires a serum response factor-binding CArG element for activity. The presence of a CArG box in smooth muscle regulatory regions is practically invariant; however, it stands to reason that additional elements contribute to the modulation of transcription in concert with the CArG. Because of the potential importance of other regulatory elements for expression of the CRP1 gene, we sought to identify additional motifs within the enhancer that are necessary for expression. In this effort, we identified a conserved cAMP response element (CRE) that, when mutated, diminishes the expression of the enhancer in cultured vascular smooth muscle cells. Using transfection and electrophoretic mobility shift assays, we have shown that the CRE binds the cAMP response element-binding protein (CREB) and is activated by Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), but not by CaMKII. Furthermore, our data demonstrate that CaMKIV stimulates CRP1 expression not only through the CRE but also through the CArG box. These findings represent evidence of a functional CRE within a smooth muscle-specific gene and provide support for a mechanism in which CREB functions as a smooth muscle determinant through CaMKIV activation.


Sign in / Sign up

Export Citation Format

Share Document