scholarly journals Comparison of Local Blood Flow and Oxygen Availability at the Same Locus in the Ischemic Gerbil Brain

Stroke ◽  
1976 ◽  
Vol 7 (3) ◽  
pp. 274-278 ◽  
Author(s):  
ROGER A. KELLY ◽  
JAMES H. HALSEY
1992 ◽  
Vol 72 (6) ◽  
pp. 2238-2243 ◽  
Author(s):  
J. C. LaManna ◽  
L. M. Vendel ◽  
R. M. Farrell

Rats were exposed to hypobaric hypoxia (0.5 atm) for up to 3 wk. Hypoxic rats failed to gain weight but maintained normal brain water and ion content. Blood hematocrit was increased by 48% to a level of 71% after 3 wk of hypoxia compared with littermate controls. Brain blood flow was increased by an average of 38% in rats exposed to 15 min of 10% normobaric oxygen and by 23% after 3 h but was not different from normobaric normoxic rats after 3 wk of hypoxia. Sucrose space, as a measure of brain plasma volume, was not changed under any hypoxic conditions. The mean brain microvessel density was increased by 76% in the frontopolar cerebral cortex, 46% in the frontal motor cortex, 54% in the frontal sensory cortex, 65% in the parietal motor cortex, 68% in the parietal sensory cortex, 68% in the hippocampal CA1 region, 57% in the hippocampal CA3 region, 26% in the striatum, and 56% in the cerebellum. The results indicate that hypoxia elicits three main responses that affect brain oxygen availability. The acute effect of hypoxia is an increase in regional blood flow, which returns to control levels on continued hypoxic exposure. Longer-term effects of continued moderate hypoxic exposure are erythropoiesis and a decrease in intercapillary distance as a result of angiogenesis. The rise in hematocrit and the increase in microvessel density together increase oxygen availability to the brain to within normal limits, although this does not imply that tissue PO2 is restored to normal.


1979 ◽  
Vol 9 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshio Mishima ◽  
Hiroshi Shigematsu ◽  
Yoshiaki Horie ◽  
Masanori Satoh

1983 ◽  
Vol 58 (4) ◽  
pp. 526-530 ◽  
Author(s):  
Nariyuki Hayashi ◽  
Barth A. Green ◽  
Mayra Gonzalez-Carvajal ◽  
Joseph Mora ◽  
Richard P. Veraa

✓ Using a reliable and reproducible microelectrode technique, consistent simultaneous measurements of local spinal cord blood flow (SCBF), tissue oxygen tension, and tissue oxygen consumption were made at cervical, thoracic, and lumbar levels in the rat spinal cord. These observations showed that the metabolic state is maintained constant along the cord, despite significant variations in vasculature. The physiological and anatomical aspects of these findings are discussed.


1983 ◽  
Vol 245 (5) ◽  
pp. G697-G702 ◽  
Author(s):  
P. T. Nowicki ◽  
B. S. Stonestreet ◽  
N. B. Hansen ◽  
A. C. Yao ◽  
W. Oh

Regional and total gastrointestinal (GI) blood flow, O2 delivery, and whole-gut O2 extraction and O2 consumption were measured before and 30, 60, and 120 min after feeding in nonanesthetized, awake 2-day-old piglets. Cardiac output and blood flow to kidneys, heart, brain, and liver were also determined. Blood flow was measured using the radiolabeled microsphere technique. In the preprandial condition, total GI blood flow was 106 +/- 9 ml X min-1 X 100 g-1, while O2 extraction was 17.2 +/- 0.9% and O2 consumption was 1.99 +/- 0.19 ml O2 X min-1 X 100 g-1. Thirty minutes after slow gavage feeding with 30 ml/kg artificial pig milk, O2 delivery to the GI tract and O2 extraction rose significantly (P less than 0.05) by 35 +/- 2 and 33 +/- 2%, respectively. The increase in O2 delivery was effected by a significant increase in GI blood flow, which was localized to the mucosal-submucosal layer of the small intestine. O2 uptake by the GI tract increased 72 +/- 4% 30 min after feeding. Cardiac output and blood flow to non-GI organs did not change significantly with feeding, whereas arterial hepatic blood flow decreased significantly 60 and 120 min after feeding. The piglet GI tract thus meets the oxidative demands of digestion and absorption by increasing local blood flow and tissue O2 extraction.


2014 ◽  
Vol 116 (6) ◽  
pp. 703-705 ◽  
Author(s):  
Aleksander S. Golub ◽  
Roland N. Pittman

Sign in / Sign up

Export Citation Format

Share Document