scholarly journals Deficiency of Superoxide Dismutase Impairs Protein C Activation and Enhances Susceptibility to Experimental Thrombosis

2015 ◽  
Vol 35 (8) ◽  
pp. 1798-1804 ◽  
Author(s):  
Sanjana Dayal ◽  
Sean X. Gu ◽  
Ryan D. Hutchins ◽  
Katina M. Wilson ◽  
Yi Wang ◽  
...  
2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sanjana Dayal ◽  
Sean X Gu ◽  
Katinan M Wilson ◽  
Ryan Hutchins ◽  
Steven R Lentz

In vitro studies have suggested that reactive oxygen species such as superoxide can produce prothrombotic effects, including enhanced platelet activation, increased tissue factor (TF) expression, and an oxidative modification in thrombomodulin impairing its capacity to enhance the generation of activated protein C (APC) by thrombin. It is not known, however, if elevated levels of superoxide accelerate susceptibility to experimental thrombosis in vivo . We used mice genetically deficient in superoxide dismutase-1 (SOD1, an antioxidant enzyme that dismutates superoxide to hydrogen peroxide), to test the hypothesis that lack of SOD1 enhances susceptibility to thrombosis. Susceptibility to carotid artery thrombosis in a photochemical injury model demonstrated that Sod1-/- mice formed stable occlusions significantly faster than Sod1+/+ mice (P<0.05). In an inferior vena cava (IVC) stasis model Sod1- /- mice developed significantly larger thrombi 48 hours after IVC ligation (P<0.05 vs. Sod1+/+ mice). After activation with thrombin (0.5 U/ml) or convulxin (200 ng/ml), no differences in surface expression of P-selectin or binding of fibrinogen were observed between platelets from Sod1-/- and Sod1+/+ mice. The expression of TF mRNA in lung measured by real time qPCR showed similar levels in Sod1-/- and Sod1 +/+ mice. However, the activation of exogenous protein C by thrombin in lung homogenates was decreased in Sod1 -/- mice (P<0.05 vs. Sod1 +/+ mice). Further, in vivo generation of activated protein C in response to thrombin (40 U/Kg) infusion was significantly lower in Sod1-/- mice (P<0.05 vs. Sod1+/+ mice). No differences in mRNA levels for thrombomodulin or endothelial protein C receptor were detected in Sod1 -/- mice vs. Sod1 +/+ mice, suggesting that altered generation of activated protein C in Sod1-/- mice may be related to a direct oxidative effect on thrombomodulin. In accordance, thrombomodulin treated with xanthine/hypoxanthine showed 40% loss of ability to activate protein C that was overcome by addition of SOD and catalase (P<0.05). We conclude that endogenous SOD1 in mice protects from impaired generation of activated protein C and accelerated thrombosis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 535-535
Author(s):  
Sanjana Dayal ◽  
Katina M Wilson ◽  
Ryan Hutchins ◽  
Steven R. Lentz

Abstract Abstract 535 In vitro studies have suggested that reactive oxygen species such as superoxide can produce several potentially prothrombotic effects, including enhanced platelet activation, increased tissue factor (TF) expression, and an oxidative modification in thrombomodulin that impairs its capacity to enhance the generation of activated protein C (APC) by thrombin. It is not known, however, if elevated levels of superoxide accelerate susceptibility to experimental thrombosis in vivo. Using a murine model that is genetically deficient in superoxide dismutase-1 (SOD1, an antioxidant enzyme that dismutates superoxide to hydrogen peroxide), we tested the hypothesis that lack of superoxide dismutase enhances susceptibility to thrombosis. Additionally, we investigated the mechanisms of superoxide-enhanced thrombosis. First, we examined the susceptibility to carotid artery thrombosis in a photochemical injury model. We found that Sod1−/− mice formed stable occlusions significantly faster than Sod1+/+ or Sod1+/− mice (P<0.05). Further, using an inferior vena cava (IVC) stasis method we observed that Sod1−/− mice developed significantly larger thrombi 48 hours after IVC ligation (P<0.05 compared with Sod1+/+ or Sod1+/− mice). These findings suggest that deficiency of SOD1 leads to increased susceptibility to both arterial and venous thrombosis in mice. To address the mechanism of accelerated thrombosis, we first examined activation of platelets in response to multiple agonists using flow cytometry. After activation by thrombin (0.5 U/ml) and convulxin (200 ng/ml), no differences in surface expression of P-selectin or binding of fibrinogen to activated platelets were observed between Sod1−/−, Sod1+/+, or Sod1+/− mice, suggesting that increased susceptibility to thrombosis in Sod1−/− mice is not platelet mediated. Next, we measured expression of TF mRNA in lung by real time qPCR. TF mRNA levels in Sod1−/− mice were similar to those in Sod1+/+ mice, suggesting that deficiency of SOD1 does not influence TF expression in mice. Finally, we measured the activation of protein C in vivo in response to infusion of thrombin (40 U/Kg). Generation of activated protein C was significantly lower in Sod1−/− mice compared with Sod1+/+ mice (P<0.05). No differences in mRNA levels for thrombomodulin or endothelial protein C receptor were detected in Sod1−/− mice compared with Sod1+/+ mice (P=0.4 and 0.6 respectively), suggesting that altered generation of activated protein C in Sod1−/− mice may be related to a direct oxidative effect on thrombomodulin rather than to decreased expression of thrombomodulin or EPCR. We conclude that lack of SOD1 in mice accelerates thrombosis and impairs the protein C anticoagulant response to thrombin. Disclosures: No relevant conflicts of interest to declare.


Anaesthesia ◽  
2001 ◽  
Vol 56 (12) ◽  
pp. 1133-1135 ◽  
Author(s):  
Tariq Hoth ◽  
Timothy W. Evans

1994 ◽  
Vol 90 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Maria S. Almansa ◽  
Luis A. del Rio ◽  
Francisca Sevilla

Sign in / Sign up

Export Citation Format

Share Document