scholarly journals Loss of TIMP4 (Tissue Inhibitor of Metalloproteinase 4) Promotes Atherosclerotic Plaque Deposition in the Abdominal Aorta Despite Suppressed Plasma Cholesterol Levels

Author(s):  
Mei Hu ◽  
Sayantan Jana ◽  
Tolga Kilic ◽  
Faqi Wang ◽  
Mengcheng Shen ◽  
...  

Objective: Atherosclerosis is accumulation of lipids and extracellular matrix in the arterial wall. TIMPs (tissue inhibitor of metalloproteinases) can impact plaque deposition by regulating ECM (extracellular matrix) turnover. TIMP4 also influences lipid metabolism and smooth muscle cell (SMC) proliferation. We investigated the role of TIMP4 in atherosclerosis. Approach and Results: Mice lacking low-density lipoprotein receptor ( Ldlr −/− ) and Timp4 ( Timp4 −/− / Ldlr −/− ) were fed high-fat diet (HFD) or regular laboratory diet. After 3 or 6 months, HFD-fed male and female Timp4 −/− / Ldlr −/− mice exhibited higher plaque density in the abdominal aorta (but not in aortic valves, arch, thoracic aorta) compared with Ldlr −/− mice. Although plasma lipid and cholesterol levels were lower in Timp4 −/− / Ldlr −/− -HFD, cholesterol content in the abdominal aorta was higher along with elevated inflammatory cytokines, MMP (matrix metalloproteinase) activities, CD68 + /calponin + macrophage-like SMCs in Timp4 −/− / Ldlr −/− -HFD compared with Ldlr −/− -HFD mice. In vitro, oxidized LDL (low-density lipoprotein) markedly increased CD68 expression, reduced SMC markers, increased lipid uptake, and reduced cholesterol efflux protein ABCA1 (ATP-binding cassette transporter A1) in Timp4 −/− / Ldlr −/− compared with Ldlr −/− primary SMCs from abdominal, but not thoracic aorta. TIMP4 expression in the abdominal aorta (in vivo) and its corresponding SMCs (in vitro) was ≈2-fold higher than in the thoracic aorta and SMCs; TIMP4 levels decreased following HFD. Timp4 -deficiency in bone marrow–derived macrophages did not alter their foam cell formation capacity. Conclusions: TIMP4 protects against plaque deposition in the abdominal aorta independent of plasma cholesterol levels. TIMP4 prevents proteolytic degradation of ABCA1 in SMCs, hindering cholesterol accumulation and transdifferentiation to macrophage-like foam cells, representing a novel negative regulator of atherosclerosis.

Author(s):  
Jaroslav A. Hubacek ◽  
Tommy Hyatt

AbstractMutations in a putative low-density lipoprotein (LDL) receptor adaptor protein called


1973 ◽  
Vol 45 (5) ◽  
pp. 583-592 ◽  
Author(s):  
Gilbert R. Thompson ◽  
J. Paul Miller

1. Plasma lipids and lipoproteins have been studied in control subjects and patients with various types of steatorrhoea. 2. Low plasma cholesterol levels were found in malabsorbers and were associated with decreased amounts of low-density lipoprotein (LDL) in males and high-density lipoprotein (HDL) in females. 3. Serum triglyceride levels were normal in males, but exceeded control values in some of the females, due to an increase in very-low-density lipoprotein. 4. LDL composition was abnormal in both male and female malabsorbers, with a decreased proportion of cholesterol ester and an increased proportion of triglyceride. There was also an increased proportion of triglyceride in HDL. 5. These findings show that malabsorption markedly influences not only the concentration but also the composition of plasma lipoproteins.


Circulation ◽  
2018 ◽  
Vol 138 (22) ◽  
pp. 2513-2526 ◽  
Author(s):  
Anton Gisterå ◽  
Maria L. Klement ◽  
Konstantinos A. Polyzos ◽  
Reiner K.W. Mailer ◽  
Amanda Duhlin ◽  
...  

2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


Sign in / Sign up

Export Citation Format

Share Document