Abstract 1680: Notch Signaling Directly Targets Msx2: Possible Role of Notch Signaling in Osteogenic Conversion of Vascular Smooth Muscle Cells and Vascular Calcification

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Takehisa Shimizu ◽  
Toru Tanaka ◽  
Tatsuya Iso ◽  
Masahiko Kurabayashi

Vascular calcification is a prominent feature of atherosclerosis and closely correlated with cardiovascular morbidity and mortality. In this study, we hypothesize that Notch signaling plays an important role in osteogenic conversion of smooth muscle cells (SMCs) and vascular calcification. <Methods and Results> Either Notch ligand-expressing cells or overexpression of Notch intracellular domains (NICDs) induced expression of Msx2, a key regulator of osteogenic conversion, in human aortic SMCs (HASMCs). In addition, overexpression of Notch1 intracellular domain (N1-ICD) markedly upregulated alkaline phosphatase (ALP) activity and matrix mineralization of HASMCs. A knockdown experiment with a small interfering RNA confirmed that Msx2, but not Runx2/Cbfa1, another key osteogenic transcription factor, is responsible for Notch1-induced osteogenic conversion of HASMCs. Furthermore, this Notch1-Msx2 pathway was independent of bone morphogenetic protein-2 (BMP-2), an osteogenic morphogen upstream of Msx2. The transcriptional activity of the Msx2 promoter was significantly enhanced by Notch ligands stimulation, whereas it was abrogated by a specific Notch signaling inhibitor. The RBP-Jk binding element within the Msx2 promoter was critical to Notch1-induced Msx2 gene expression, and correspondingly, neither N1-ICD overexpression nor Notch ligands stimulation increase the Msx2 expression or transcriptional activity of the Msx2 promoter, respectively, in RBP-Jk-deficient fibroblasts. Immunohistochemistry of human artery specimens revealed colocalization of Notch1 and Msx2 within atherosclerotic plaques, indicating a role of Notch1-Msx2 pathway in vascular calcification in vivo. These results suggest that Notch signaling directly targets Msx2, thus accelerating osteogenic conversion of HASMCs and, as a result, a formation of vascular calcification.

2020 ◽  
Vol 21 (19) ◽  
pp. 7207
Author(s):  
Florian Poetsch ◽  
Laura A. Henze ◽  
Misael Estepa ◽  
Barbara Moser ◽  
Burkert Pieske ◽  
...  

In diabetes mellitus, hyperglycemia promotes the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) to enhance medial vascular calcification, a common complication strongly associated with cardiovascular disease and mortality. The mechanisms involved are, however, still poorly understood. Therefore, the present study explored the potential role of serum- and glucocorticoid-inducible kinase 1 (SGK1) during vascular calcification promoted by hyperglycemic conditions. Exposure to high-glucose conditions up-regulated the SGK1 expression in primary human aortic VSMCs. High glucose increased osteogenic marker expression and activity and, thus, promoted the osteogenic transdifferentiation of VSMCs, effects significantly suppressed by additional treatment with the SGK1 inhibitor EMD638683. Moreover, high glucose augmented the mineralization of VSMCs in the presence of calcification medium, effects again significantly reduced by SGK1 inhibition. Similarly, SGK1 knockdown blunted the high glucose-induced osteogenic transdifferentiation of VSMCs. The osteoinductive signaling promoted by high glucose required SGK1-dependent NF-κB activation. In addition, advanced glycation end products (AGEs) increased the SGK1 expression in VSMCs, and SGK1 inhibition was able to interfere with AGEs-induced osteogenic signaling. In conclusion, SGK1 is up-regulated and mediates, at least partly, the osteogenic transdifferentiation and calcification of VSMCs during hyperglycemic conditions. Thus, SGK1 inhibition may reduce the development of vascular calcification promoted by hyperglycemia in diabetes.


2018 ◽  
Vol 114 (4) ◽  
pp. 590-600 ◽  
Author(s):  
Andrew L Durham ◽  
Mei Y Speer ◽  
Marta Scatena ◽  
Cecilia M Giachelli ◽  
Catherine M Shanahan

Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
A Moiseenko ◽  
E El Agha ◽  
B MacKenzie ◽  
S De Langhe ◽  
S Bellusci

Sign in / Sign up

Export Citation Format

Share Document