Abstract MP08: Whole Exome Sequencing Study Identified A Novel Variant For Kidney Function And Progression Of Chronic Kidney Disease

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Changwei Li ◽  
Michael Francis ◽  
Adrianna Westbrook ◽  
Ruiyuan Zhang ◽  
Ye Shen ◽  
...  

Introduction: Most genetic variants for chronic kidney disease (CKD) have been identified in non-coding regions, with functional roles that are difficult to interpret. Hypothesis: A whole exome sequencing study focusing on coding variants will reveal novel mechanisms of kidney function and CKD. Methods: We performed whole exome sequencing analyses of cystatin C among 29,789 UK Biobank (UKB) participants with further confirmation among 4,297 white and 607 African American participants of the Health and Retirement Study (HRS). Conditional analyses for loci achieving exome-wide significance ( P <3.5х10 -7 ) were conducted in UKB using both the exome (n=29,789) and imputed GWAS data (n=295,122). Genomic findings were tested for relevance to baseline estimated glomerular filtration rate (eGFR) and stringently adjudicated CKD progression events among participants of the Chronic Renal Insufficiency Cohort (CRIC) by race and smoking status, using a base model and a full model ( Table ). Results: We identified a common missense variant, CST9 rs2983640, in a previously reported locus ( CST3 intron rs13038305), of which the minor G allele was associated with lower serum cystatin C level (UKB: beta=-0.03 mg/L, P =7.64х10 -92 ; HRS whites: beta=-0.05 mg/L, P =4.71х10 -6 ; HRS African Americans: beta=-0.03 mg/L, P =0.64; and multi-ethnic meta-analysis beta=-0.03 mg/L, P =2.46х10 -91 ). After controlling for the CST3 variant, the G allele was associated with higher cystatin C level (UKB exome: beta=0.003 mg/L, P =0.04; UKB GWAS: beta=0.003 mg/L, P =1.47х10 -10 ). Similar associations were identified in white CRIC participants (direct effect: beta=-0.05 mg/L, P =0.005; conditional effect: beta=0.004 mg/L, P =0.86). The CST9 rs2983640 G allele was associated with lower baseline eGFR (base model beta=-0.33 ml/min/1.73 m 2 , P =1.98х10 -6 ) and higher hazard of developing CKD progression independent of the reported CST3 variant ( Table ). Conclusions: We identified a novel missense variant influencing cystatin C level and CKD progression.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Prasad Devarajan ◽  
Geoffrey Block ◽  
Keisha Gibson ◽  
Jim McKay ◽  
Colin Meyer ◽  
...  

Abstract Background and Aims Knowledge about genetic causes of chronic kidney disease (CKD) is one of the key gaps in global kidney research and recent International Society of Nephrology recommendations encourage the adoption of genetic testing to enable a goal of providing precision medicine based on individual risk (1). A recent whole-exome sequencing study showed that genetic inheritance may be responsible for up to 10% of CKD diagnoses, many of which may be previously undiagnosed or mis-diagnosed (2). Continued advances in DNA sequencing technology have made genetic testing, even whole-exome sequencing, applicable to routine clinical diagnoses. In order to test the hypothesis that genetic testing can provide valuable information to increase the accuracy and precision of diagnosis in CKD, we designed a gene panel to prospectively provide genetic testing in a subset of patients with CKD defined by a specific set of inclusion criteria. Method Reata Pharmaceuticals is partnering with Invitae on a program called KidneyCode, which provides no-charge genetic testing to enable diagnosis of three specific rare monogenic causes of CKD: Alport syndrome (AS), autosomal dominant polycystic kidney disease (ADPKD) due to PKD2 mutations, and focal segmental glomerulosclerosis (FSGS), as well as detection of variants in one of the autosomal recessive polycystic kidney disease gene, PKHD1. Invitae’s renal disease panel includes 17 genes (ACTN4, ANLN, CD2AP, COL4A3, COL4A4, COL4A5, CRB2, HNF1A, INF2, LMX1B, MYO1E, NPHS1, NPHS2, PAX2, PKD2, PKHD1, and TRPC6), and its assay includes both full-gene sequencing and intragenic deletion/duplication analysis using next-generation sequencing (NGS). The assay targets the coding exons and flanking 10bp of intronic sequences. Invitae’s method of variant classification uses a systematic process for assessing evidence based on guidelines published by the American College of Medical Genetics (3). Patients in the US at risk for hereditary CKD (eGFR ≤ 90 mL/min/1.73m2 plus hematuria or a family history of CKD) or with a known diagnosis of AS or FSGS are eligible. Family members of those with suspected or known AS or FSGS are also eligible. All participants in the KidneyCode program have access to genetic counseling follow-up at no additional charge. Results In the first five months of the KidneyCode program, 152 genetic tests have been completed. A genetic variant was reported in 87 patients. Of those 87 patients, 67 patients had 75 variants in COL4A3, 4, or 5 genes (34 Pathogenic/Likely Pathogenic (P/LP), 41 Variants of Uncertain Significance (VUS)), 20 patients had 24 variants in genes associated with FSGS (3 P/LP, 21 VUS), 15 patients had 20 variants in PKHD1 (1 P/LP, 19 VUS), and 2 patients had variants in PKD2 (1 P/LP, 1 VUS). Of the 34 patients with Pathogenic or Likely Pathogenic COL4A variants, 19 reported a previous diagnosis of Alport syndrome. Other diagnoses in patients with COL4A mutations included FSGS, thin basement membrane disease, and familial hematuria. Extra-renal manifestations such as hearing loss and eye disease were reported in 7 of the 34 patients with COL4A variants. Conclusion Initial results with the KidneyCode panel demonstrate the utility of NGS and support the hypothesis that combining genetic testing with clinical presentation and medical history can significantly improve accuracy and precision of diagnosis in patients with hereditary CKD.


2018 ◽  
Vol 169 (2) ◽  
pp. 131
Author(s):  
Alex R. Chang ◽  
Jonathan Z. Luo ◽  
Kevin Ho ◽  
Tooraj Mirshahi ◽  
Michael F. Murray

2019 ◽  
Vol 4 (7) ◽  
pp. S89 ◽  
Author(s):  
K. JAYASINGHE ◽  
S. Zortnitza ◽  
P.G. Kerr ◽  
T. Andrew ◽  
W. John ◽  
...  

2018 ◽  
Vol 169 (2) ◽  
pp. 132
Author(s):  
Krzysztof Kiryluk ◽  
Emily Groopman ◽  
Hila Rasouly ◽  
Christine K. Garcia ◽  
Ali G. Gharavi

2017 ◽  
Vol 168 (2) ◽  
pp. 100 ◽  
Author(s):  
Sneh Lata ◽  
Maddalena Marasa ◽  
Yifu Li ◽  
David A. Fasel ◽  
Emily Groopman ◽  
...  

Nephron ◽  
2021 ◽  
pp. 1-6
Author(s):  
Suramath Isaranuwatchai ◽  
Ankanee Chanakul ◽  
Chupong Ittiwut ◽  
Chalurmpon Srichomthong ◽  
Vorasuk Shotelersuk ◽  
...  

Chronic kidney disease of unknown etiology (CKDu) has been a problem in renal practice as indefinite diagnosis may lead to inappropriate management. Here, we report a 54-year-old father diagnosed with CKDu at 33 years old and his 8-year-old son with steroid-resistant nephrotic syndrome. Using whole-exome sequencing, both were found to be heterozygous for c.737G>A (p.Arg246Gln) in LMX1B. The diagnosis of LMX1B-associated nephropathy has led to changes in the treatment plan with appropriate genetic counseling. The previously reported cases with this particular mutation were also reviewed. Most children with LMX1B-associated nephropathy had nonnephrotic proteinuria with normal renal function. Interestingly, our pediatric case presented with steroid-resistant nephrotic syndrome at 8 years old and progressed to ESRD requiring peritoneal dialysis at the age of 15 years. Our report emphasized the need of genetic testing in CKDu for definite diagnosis leading to precise management.


2021 ◽  
Vol 22 ◽  
Author(s):  
Masoud Heidari ◽  
Hamid Gharshasbi ◽  
Alireza Isazadeh ◽  
Morteza Soleyman-Nejad ◽  
Mohammad Hossein Taskhiri ◽  
...  

Background:: Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective: The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods: Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results: In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion: In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.


Sign in / Sign up

Export Citation Format

Share Document