scholarly journals Mechanically Unloading the Left Ventricle Before Coronary Reperfusion Reduces Left Ventricular Wall Stress and Myocardial Infarct Size

Circulation ◽  
2013 ◽  
Vol 128 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Navin K. Kapur ◽  
Vikram Paruchuri ◽  
Jose Angel Urbano-Morales ◽  
Emily E. Mackey ◽  
Gerard H. Daly ◽  
...  
2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Navin K Kapur ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Kevin Morine ◽  
Wajih Syed ◽  
...  

Management of an acute myocardial infarction (AMI) focuses on restoring oxygen supply to limit myocardial damage, however ischemia-reperfusion injury (IRI) remains a major determinant of mortality in AMI. No studies have targeted initially reducing left ventricular stroke work (LVSW) to limit IRI in AMI. The Impella CP axial-flow pump reduces LVSW. We tested the hypothesis that first reducing myocardial work and delaying coronary reperfusion reduces infarct size by activating cardioprotective signaling pathways. Methods: AMI was induced by occlusion of the left anterior descending artery (LAD) via angioplasty for 90 minutes in 50kg male Yorkshire swine (n=5/group). In Group 1, the LAD was reperfused for 120 minutes. In Group 2, after 90 minutes of ischemia the Impella CP device was activated and the LAD left occluded for an additional 60 minutes (150 minutes of LAD occlusion total), followed by 120 minutes of reperfusion. The Impella CP was active throughout reperfusion. Western blot analysis quantified myocardial kinase activity. Results: Compared to Group 1, Group 2 had a reduced LVSW, LV end-diastolic volume and end-diastolic pressure after reperfusion [Fig A]. Group 2 showed increased myocardial phosphorylation of cardioprotective kinases: AKT, ERK, GSK3β and STAT-3 [Fig B]. Compared to Group 1, the percent myocardial infarct size normalized to the area at risk (AAR) was reduced in Group 2 (73+13% vs 42+15%, p=0.02). Conclusion: We report the potential benefit of primarily unloading the heart and delaying coronary reperfusion to salvage myocardium in AMI. This is the first report to examine the impact of the Impella CP on cardioprotective signaling in the heart.


1978 ◽  
Vol 17 (04) ◽  
pp. 142-148
Author(s):  
U. Büll ◽  
S. Bürger ◽  
B. E. Strauer

Studies were carried out in order to determine the factors influencing myocardial 201T1 uptake. A total of 158 patients was examined with regard to both 201T1 uptake and the assessment of left ventricular and coronary function (e. g. quantitative ventriculography, coronary arteriography, coronary blood flow measurements). Moreover, 42 animal experiments (closed chest cat) were performed. The results demonstrate that:1) 201T1 uptake in the normal and hypertrophied human heart is linearly correlated with the muscle mass of the left ventricle (LVMM);2) 201T1 uptake is enhanced in the inner (subendocardial) layer and is decreased in the outer (subepicardial) layer of the left ventricular wall. The 201T1 uptake of the right ventricle is 40% lower in comparison to the left ventricle;3) the basic correlation between 201T1 uptake and LVMM is influenced by alterations of both myocardial flow and myocardial oxygen consumption; and4) inotropic interventions (isoproterenol, calcium, norepinephrine) as well as coronary dilatation (dipyridamole) may considerably augment 201T1 uptake in accordance with changes in myocardial oxygen consumption and/or myocardial flow.It is concluded that myocardial 201T1 uptake is determined by multiple factors. The major determinants have been shown to include (i) muscle mass, (ii) myocardial flow and (iii) myocardial oxygen consumption. The clinical data obtained from patient groups with normal ventricular function, with coronary artery disease, with left ventricular wall motion abnormalities and with different degree of left ventricular hypertrophy are correlated with quantitated myocardial 201T1 uptake.


Circulation ◽  
1990 ◽  
Vol 81 (4) ◽  
pp. 1374-1379 ◽  
Author(s):  
D M Van Winkle ◽  
T Matsuki ◽  
N M Gad ◽  
M C Jordan ◽  
J M Downey

1970 ◽  
Vol 26 (1) ◽  
pp. 71-83 ◽  
Author(s):  
HERMAN L. FALSETTI ◽  
ROBERT E. MATES ◽  
COLIN GRANT ◽  
DAVID G. GREENE ◽  
IVAN L. BUNNELL

Author(s):  
Alexander B Veitinger ◽  
Audrey Komguem ◽  
Lena Assling-Simon ◽  
Martina Heep ◽  
Julia Schipke ◽  
...  

Abstract OBJECTIVES Esmolol-based cardioplegic arrest offers better cardioprotection than crystalloid cardioplegia but has been compared experimentally with blood cardioplegia only once. We investigated the influence of esmolol crystalloid cardioplegia (ECCP), esmolol blood cardioplegia (EBCP) and Calafiore blood cardioplegia (Cala) on cardiac function, metabolism and infarct size in non-infarcted and infarcted isolated rat hearts. METHODS Two studies were performed: (i) the hearts were subjected to a 90-min cardioplegic arrest with ECCP, EBCP or Cala and (ii) a regional myocardial infarction was created 30 min before a 90-min cardioplegic arrest. Left ventricular peak developed pressure (LVpdP), velocity of contractility (dLVP/dtmax), velocity of relaxation over time (dLVP/dtmin), heart rate and coronary flow were recorded. In addition, the metabolic parameters were analysed. The infarct size was determined by planimetry, and the myocardial damage was determined by electron microscopy. RESULTS In non-infarcted hearts, cardiac function was better preserved with ECCP than with EBCP or Cala relative to baseline values (LVpdP: 100 ± 28% vs 86 ± 11% vs 57 ± 7%; P = 0.002). Infarcted hearts showed similar haemodynamic recovery for ECCP, EBCP and Cala (LVpdP: 85 ± 46% vs 89 ± 55% vs 56 ± 26%; P = 0.30). The lactate production with EBCP was lower than with ECCP (0.6 ± 0.7 vs 1.4 ± 0.5 μmol/min; P = 0.017). The myocardial infarct size and (ECCP vs EBCP vs Cala: 16 ± 7% vs 15 ± 9% vs 24 ± 13%; P = 0.21) the ultrastructural preservation was similar in all groups. CONCLUSIONS In non-infarcted rat hearts, esmolol-based cardioplegia, particularly ECCP, offers better myocardial protection than Calafiore. After an acute myocardial infarction, cardioprotection with esmolol-based cardioplegia is similar to that with Calafiore.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Marie Sophie L de Koning ◽  
B. D Westenbrink ◽  
Solmaz Assa ◽  
Dirk J van Veldhuisen ◽  
Robin P Dullaart ◽  
...  

Background: Circulating ketone bodies (KB) are increased in patients with heart failure, corresponding with increased utilization of KB as a cardiac fuel. Whether circulating KB are increased in patients presenting with ST-elevation myocardial infarction (STEMI) and whether this is associated with infarct size is unknown. Methods: KB were measured in 379 non-diabetic participants of the Glycometabolic Intervention as Adjunct to Primary Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction (GIPS) III trial (Clinicaltrial.gov Identifier: NCT01217307). Non-fasting plasma concentrations of the KB beta-hydroxybutyrate, acetoacetate, acetone were measured at presentation, 24 hours and 4 months after STEMI presentation using nuclear magnetic resonance spectroscopy. Associations of circulating KB with myocardial infarct size and left ventricular ejection fraction (both detected with MRI at 4 months after STEMI) were determined using multivariable linear regression analyses. Results: Circulating KB were higher at baseline (total KB 520 [315-997](median [IQR], μmol/L), compared to 206 [174-246] at 24 hours and 166 [143-201] at 4 months ( P <0.001 for all)). KB at 24 hours were positively associated with enzymatic infarct size, HbA1C and beta-blocker use. KB at 24 hours were independently associated with MRI outcomes at 4 months. Higher KB was associated with larger myocardial infarct size (total KB: standardized β=0.17, 95%-confidence interval (CI) (0.04-0.31), P =0.012) and lower ejection fraction (standardized β=-0.15, 95%-CI (-0.29- -0.009), P =0.037). Conclusion: Circulating KB are increased in patients with STEMI and are independently associated with myocardial infarct size and left ventricular function after 4 months of follow-up. The increase in circulating KB may reflect maladaptive changes of myocardial metabolism during the acute phase.


1996 ◽  
Vol 1 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Michael R. Gralinski ◽  
Edward M. Driscoll ◽  
Gregory S. Friedrichs ◽  
Michael R. DeNardis ◽  
Benedict R. Lucchesi

Background We determined if a single administration of heparin or nonanticoagulant N-acetylheparin could reduce myocardial injury resulting from a 90-minute occlusion of the left circumflex coronary artery (LCX) and 6 hours of reperfusion in the anesthetized canine. Methods and Results Heparin (2 mg/kg), N-acetylheparin (2 mg/kg), or vehicle, 0.9% sodium chloride (control), was administered intravenously to separate groups of animals 2 hours before LCX occlusion. To ensure parity of LCX ischemia, only animals with ischemic zone regional blood flow < 0.16 mL/min/g tissue were included in the final analysis. Hemodynamics did not differ among the three study groups. Infarct size as a percentage of the left ventricular area at risk was obtained for each group. Myocardial infarct size was 43.0 ± 3.9% in the vehicle, 28.8 ± 5.8% in the heparin ( P < .05 vs vehicle) and 24.7 ± 4.6% ( P < .05 vs vehicle) in the N-acetylheparin-treated animals. Conclusion Pretreatment with heparin or its nonanticoagulant derivative, N-acetylheparin, provides significant protection to the regionally ischemic and reperfused canine myocardium independent of either plasma glycosaminoglycan concentration or alterations in the coagulation system.


1981 ◽  
Author(s):  
K Genth ◽  
J Frank ◽  
J Schaefer ◽  
V Korten ◽  
D Heene

The influence of streptokinase (SK) on myocardial infarct size and left ventricular function after acute myocardial infarction was investigated. 21 patients with myocardial infarction received SK (SK-group), 27 patients underwent conventional therapy (C-group). In both groups therapy started within 8 hours after onset of chest pain. In the SK-group initially 250 000 IU were administered intravenously, followed by a maintenance dose of 100 000 IU/h, lasting 15 hours. Blood samples at 8 hours intervals were collected for 3 days for serial CPK-analysis to calculate infarct size (I=∫f(t)×dt×K×bw). M-mode echocardiography was taken before start of t her a py and after 15, 24, 48 and 72 hours. AOP and heart rate were recorded continuously. Infarct size was 47±12g in the SK-group and 84±25g in the C-group (p<0.05). The average time to peak blood CPK-activity was 24 hours in the SK-group and 40 hours in the C-group. Peak CPK-level was significantly higher (p<0.5) in the SK-group (841±160U/l) than in the C-group (532±13 8 U / l ) . In 16 patients of the SK-group short periods of ventricular tachycardia were recorded during the period of fibrinolysis. Before therapy all patients showed abnormal motion of the posterior left ventricular wall and/or the interventricular septum, detected by echocardiography. 14 patients showed after fibrinolysis an improved or normalized motion.The results indicate that early fibrinolysis may reopen the occluded coronary artery. Reperfusion of the ischemic perfusion area may salvage jeo pardized myocardium, therefore infarct size was reduced and ventricular function improved.


Sign in / Sign up

Export Citation Format

Share Document