Cardioprotection with esmolol-based cardioplegia for non-infarcted and infarcted rat hearts

Author(s):  
Alexander B Veitinger ◽  
Audrey Komguem ◽  
Lena Assling-Simon ◽  
Martina Heep ◽  
Julia Schipke ◽  
...  

Abstract OBJECTIVES Esmolol-based cardioplegic arrest offers better cardioprotection than crystalloid cardioplegia but has been compared experimentally with blood cardioplegia only once. We investigated the influence of esmolol crystalloid cardioplegia (ECCP), esmolol blood cardioplegia (EBCP) and Calafiore blood cardioplegia (Cala) on cardiac function, metabolism and infarct size in non-infarcted and infarcted isolated rat hearts. METHODS Two studies were performed: (i) the hearts were subjected to a 90-min cardioplegic arrest with ECCP, EBCP or Cala and (ii) a regional myocardial infarction was created 30 min before a 90-min cardioplegic arrest. Left ventricular peak developed pressure (LVpdP), velocity of contractility (dLVP/dtmax), velocity of relaxation over time (dLVP/dtmin), heart rate and coronary flow were recorded. In addition, the metabolic parameters were analysed. The infarct size was determined by planimetry, and the myocardial damage was determined by electron microscopy. RESULTS In non-infarcted hearts, cardiac function was better preserved with ECCP than with EBCP or Cala relative to baseline values (LVpdP: 100 ± 28% vs 86 ± 11% vs 57 ± 7%; P = 0.002). Infarcted hearts showed similar haemodynamic recovery for ECCP, EBCP and Cala (LVpdP: 85 ± 46% vs 89 ± 55% vs 56 ± 26%; P = 0.30). The lactate production with EBCP was lower than with ECCP (0.6 ± 0.7 vs 1.4 ± 0.5 μmol/min; P = 0.017). The myocardial infarct size and (ECCP vs EBCP vs Cala: 16 ± 7% vs 15 ± 9% vs 24 ± 13%; P = 0.21) the ultrastructural preservation was similar in all groups. CONCLUSIONS In non-infarcted rat hearts, esmolol-based cardioplegia, particularly ECCP, offers better myocardial protection than Calafiore. After an acute myocardial infarction, cardioprotection with esmolol-based cardioplegia is similar to that with Calafiore.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Andreas Boening ◽  
Maximilian Hinke ◽  
Martina Heep ◽  
Kerstin Boengler ◽  
Bernd Niemann ◽  
...  

Abstract Background Because hearts in acute myocardial infarction are often prone to ischemia-reperfusion damage during cardiac surgery, we investigated the influence of intracellular crystalloid cardioplegia solution (CCP) and extracellular blood cardioplegia solution (BCP) on cardiac function, metabolism, and infarct size in a rat heart model of myocardial infarction. Methods Following euthanasia, the hearts of 50 rats were quickly excised, cannulated, and inserted into a blood-perfused isolated heart apparatus. A regional myocardial infarction was created in the infarction group (18 hearts) for 120 min; the control group (32 hearts) was not subjected to infarction. In each group, either Buckberg BCP or Bretschneider CCP was administered for an aortic clamping time of 90 min. Functional parameters were recorded during reperfusion: coronary blood flow, left ventricular developed pressure (LVDP) and contractility (dp/dt max). Infarct size was determined by planimetry. The results were compared between the groups using analysis of variance or parametric tests, as appropriate. Results Cardiac function after acute myocardial infarction, 90 min of cardioplegic arrest, and 90 min of reperfusion was better preserved with Buckberg BCP than with Bretschneider CCP relative to baseline (BL) values (LVDP 54 ± 11% vs. 9 ± 2.9% [p = 0.0062]; dp/dt max. 73 ± 11% vs. 23 ± 2.7% [p = 0.0001]), whereas coronary flow was similarly impaired (BCP 55 ± 15%, CCP 63 ± 17% [p = 0.99]). The infarct in BCP-treated hearts was smaller (25% of myocardium) and limited to the area of coronary artery ligation, whereas in CCP hearts the infarct was larger (48% of myocardium; p = 0.029) and myocardial necrosis was distributed unevenly to the left ventricular wall. Conclusions In a rat model of acute myocardial infarction followed by cardioplegic arrest, application of BCP leads to better myocardial recovery than CCP.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Marie Sophie L de Koning ◽  
B. D Westenbrink ◽  
Solmaz Assa ◽  
Dirk J van Veldhuisen ◽  
Robin P Dullaart ◽  
...  

Background: Circulating ketone bodies (KB) are increased in patients with heart failure, corresponding with increased utilization of KB as a cardiac fuel. Whether circulating KB are increased in patients presenting with ST-elevation myocardial infarction (STEMI) and whether this is associated with infarct size is unknown. Methods: KB were measured in 379 non-diabetic participants of the Glycometabolic Intervention as Adjunct to Primary Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction (GIPS) III trial (Clinicaltrial.gov Identifier: NCT01217307). Non-fasting plasma concentrations of the KB beta-hydroxybutyrate, acetoacetate, acetone were measured at presentation, 24 hours and 4 months after STEMI presentation using nuclear magnetic resonance spectroscopy. Associations of circulating KB with myocardial infarct size and left ventricular ejection fraction (both detected with MRI at 4 months after STEMI) were determined using multivariable linear regression analyses. Results: Circulating KB were higher at baseline (total KB 520 [315-997](median [IQR], μmol/L), compared to 206 [174-246] at 24 hours and 166 [143-201] at 4 months ( P <0.001 for all)). KB at 24 hours were positively associated with enzymatic infarct size, HbA1C and beta-blocker use. KB at 24 hours were independently associated with MRI outcomes at 4 months. Higher KB was associated with larger myocardial infarct size (total KB: standardized β=0.17, 95%-confidence interval (CI) (0.04-0.31), P =0.012) and lower ejection fraction (standardized β=-0.15, 95%-CI (-0.29- -0.009), P =0.037). Conclusion: Circulating KB are increased in patients with STEMI and are independently associated with myocardial infarct size and left ventricular function after 4 months of follow-up. The increase in circulating KB may reflect maladaptive changes of myocardial metabolism during the acute phase.


1981 ◽  
Author(s):  
K Genth ◽  
J Frank ◽  
J Schaefer ◽  
V Korten ◽  
D Heene

The influence of streptokinase (SK) on myocardial infarct size and left ventricular function after acute myocardial infarction was investigated. 21 patients with myocardial infarction received SK (SK-group), 27 patients underwent conventional therapy (C-group). In both groups therapy started within 8 hours after onset of chest pain. In the SK-group initially 250 000 IU were administered intravenously, followed by a maintenance dose of 100 000 IU/h, lasting 15 hours. Blood samples at 8 hours intervals were collected for 3 days for serial CPK-analysis to calculate infarct size (I=∫f(t)×dt×K×bw). M-mode echocardiography was taken before start of t her a py and after 15, 24, 48 and 72 hours. AOP and heart rate were recorded continuously. Infarct size was 47±12g in the SK-group and 84±25g in the C-group (p<0.05). The average time to peak blood CPK-activity was 24 hours in the SK-group and 40 hours in the C-group. Peak CPK-level was significantly higher (p<0.5) in the SK-group (841±160U/l) than in the C-group (532±13 8 U / l ) . In 16 patients of the SK-group short periods of ventricular tachycardia were recorded during the period of fibrinolysis. Before therapy all patients showed abnormal motion of the posterior left ventricular wall and/or the interventricular septum, detected by echocardiography. 14 patients showed after fibrinolysis an improved or normalized motion.The results indicate that early fibrinolysis may reopen the occluded coronary artery. Reperfusion of the ischemic perfusion area may salvage jeo pardized myocardium, therefore infarct size was reduced and ventricular function improved.


2021 ◽  
Author(s):  
Qingxin Tian ◽  
Jianlong Liu ◽  
Qin Chen ◽  
Mingxiao Zhang

Abstract Objectives: To determine the effect of polyethyleneimine/sodium alginate composite nano-gel (AG/PEI-VX765NGs) coated with VX765 on cardiac function in rats with myocardial infarction (MI). Methods: VX765-polyethyleneimine nano-microspheres (PEI-VX765 NP) were encapsulated by sodium alginate (AG) nanogel (NGs) to construct AG/PEI-VX765 NGs. The morphological observation was performed under scanning electron microscope (SEM). The viability was evaluated by using CCK-8 assay in vitro. Then, 24 male SPF Sprague-Dawley rats were randomly divided into 4 groups: Sham, MI, PEI-VX765NP, and AG/PEI-VX765NGs. After 28 days, rats in each group were subjected to assessment of cardiac function by echocardiography. The myocardial infarct size was evaluated by TTC test, and the differences in cardiac fibrosis and cardiomyocyte apoptosis between groups were analyzed by histological methods. Results: The prepared NGs shows a porous structure, while PEI-VX765 NP is uniformly distributed in the AG NGs samples. AG/PEI-VX765 NGs with a concentration of VX765 (range: 0-1000 μM) displayed no significant toxicity to cells. Meanwhile, we observed a relatively more persistent release of VX765 from AG/PEI-VX765 NGs compared with PEI-VX765. LVIDs and LVIDd in both PEI-VX765 and AG/PEI-VX765NGs groups were significantly smaller than those in MI group, while ejection fraction (EF) and short-axis shortening rate (FS) were markedly increased in the above-mentioned two groups. Compared with MI group, PEI-VX765 and AG/PEI-VX765NGs groups exhibited a significant reduction in the infarct size, degree of fibrosis, and the rate of TUNEL positive cells. Conclusion: AG/PEI-VX765NGs can significantly improve the cardiac function of rats with MI.


2004 ◽  
Vol 286 (1) ◽  
pp. H276-H282 ◽  
Author(s):  
Steven P. Jones ◽  
James J. M. Greer ◽  
Aman K. Kakkar ◽  
P. Derek Ware ◽  
Richard H. Turnage ◽  
...  

Previous studies indicate that deficiency of endothelial nitric oxide (NO) synthase (eNOS)-derived NO exacerbates myocardial reperfusion injury. We hypothesized that overexpression of eNOS would reduce the extent of myocardial ischemia-reperfusion (MI/R) injury. We investigated two distinct strains of transgenic (TG) mice overexpressing the eNOS gene (eNOS TG). Bovine eNOS was overexpressed in one strain (eNOS TG-Kobe), whereas the human eNOS gene was overexpressed in the other strain (eNOS TG-RT). Non-TG (NTG) and eNOS TG mice were subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion, and the extent of myocardial infarction was determined. Myocardial infarct size was reduced by 33% in the eNOS TG-Kobe strain ( P < 0.05 vs. NTG) and by 32% in the eNOS TG-RT strain ( P < 0.05 vs. NTG). However, postischemic cardiac function (cardiac output, fractional shortening) was not improved in the eNOS TG-Kobe mouse at 24 h of reperfusion [ P = not significant (NS) vs. NTG]. In additional studies, eNOS TG-Kobe mice were subjected to 30 min of myocardial infarction and 7 days of reperfusion. Fractional shortening and the first derivative of left ventricular pressure were measured in eNOS TG-Kobe and NTG mice, and no significant differences in contractility were observed ( P = NS) between the eNOS TG mice and NTG controls. Left ventricular end-diastolic pressure was significantly ( P < 0.05 vs. NTG) reduced in the eNOS TG-Kobe strain at 7 days of reperfusion. The cardioprotective effects of eNOS overexpression on myocardial infarct size were ablated by Nω-nitro-l-arginine methyl ester (300 mg/kg) pretreatment. Thus genetic overexpression of eNOS in mice attenuates myocardial infarction after MI/R but fails to significantly protect against postischemic myocardial contractile dysfunction in mice.


Sign in / Sign up

Export Citation Format

Share Document