scholarly journals Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

Circulation ◽  
2018 ◽  
Vol 137 (9) ◽  
pp. 910-924 ◽  
Author(s):  
Denielli da Silva Gonçalves Bós ◽  
Cathelijne E. E. Van Der Bruggen ◽  
Kondababu Kurakula ◽  
Xiao-Qing Sun ◽  
Karina R. Casali ◽  
...  
2020 ◽  
Vol 10 (5) ◽  
pp. 1659-1674
Author(s):  
Chakradhari Inampudi ◽  
Ryan J. Tedford ◽  
Anna R. Hemnes ◽  
Georg Hansmann ◽  
Harm-Jan Bogaard ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 204589401987859 ◽  
Author(s):  
Guosen Yan ◽  
Jinxia Wang ◽  
Tao Yi ◽  
Junfen Cheng ◽  
Haixu Guo ◽  
...  

Pulmonary arterial hypertension is a rapidly progressive and often fatal disease. As the pathogenesis of pulmonary arterial hypertension remains unclear, there is currently no good drug for pulmonary arterial hypertension and new therapy is desperately needed. This study investigated the effects and mechanism of baicalin on vascular remodeling in rats with pulmonary arterial hypertension. A rat pulmonary arterial hypertension model was constructed using intraperitoneal injection of monocrotaline, and different doses of baicalin were used to treat these rats. The mean pulmonary arterial pressure (mPAP) and right ventricular systolic pressure (RVSP) were measured with a right heart catheter. Moreover, the hearts were dissected to determine the right ventricular hypertrophy index (RVHI). The lung tissues were stained with H&E and Masson's staining to estimate the pulmonary vascular remodeling and collagen fibrosis, and the expression of proteins in the AKT, ERK, and NF-κB p65 phosphorylation (p-AKT, p-ERK, p-p65) was examined by Western blot analysis. We found that compared with untreated pulmonary arterial hypertension rats, baicalin ameliorated pulmonary vascular remodeling and cardiorespiratory injury, inhibited p-p65 and p-ERK expression, and promoted p-AKT and p-eNOS expression. In conclusion, baicalin interfered with pulmonary vascular remodeling and pulmonary arterial hypertension development in rats through the AKT/eNOS, ERK and NF-κB signaling pathways.


2020 ◽  
Vol 318 (4) ◽  
pp. H853-H866 ◽  
Author(s):  
Yin Kang ◽  
Guangyan Zhang ◽  
Emma C. Huang ◽  
Jiapeng Huang ◽  
Jun Cai ◽  
...  

Right ventricular (RV) dysfunction is the main determinant of mortality in patients with pulmonary arterial hypertension (PAH) and while inflammation is pathogenic in PAH, there is limited information on the role of RV inflammation in PAH. Sulforaphane (SFN), a potent Nrf2 activator, has significant anti-inflammatory effects and facilitates cardiac protection in preclinical diabetic models. Therefore, we hypothesized that SFN might play a comparable role in reducing RV and pulmonary inflammation and injury in a murine PAH model. We induced PAH using SU5416 and 10% hypoxia (SuHx) for 4 wk in male mice randomized to SFN at a daily dose of 0.5 mg/kg 5 days per week for 4 wk or to vehicle control. Transthoracic echocardiography was performed to characterize chamber-specific ventricular function during PAH induction. At 4 wk, we measured RV pressure and relevant measures of histology and protein and gene expression. SuHx induced progressive RV, but not LV, diastolic and systolic dysfunction, and RV and pulmonary remodeling, fibrosis, and inflammation. SFN prevented SuHx-induced RV dysfunction and remodeling, reduced RV inflammation and fibrosis, upregulated Nrf2 expression and its downstream gene NQO1, and reduced the inflammatory mediator leucine-rich repeat and pyrin domain-containing 3 (NLRP3). SFN also reduced SuHx-induced pulmonary vascular remodeling, inflammation, and fibrosis. SFN alone had no effect on the heart or lungs. Thus, SuHx-induced RV and pulmonary dysfunction, inflammation, and fibrosis can be attenuated or prevented by SFN, supporting the rationale for further studies to investigate SFN and the role of Nrf2 and NLRP3 pathways in preclinical and clinical PAH studies. NEW & NOTEWORTHY Pulmonary arterial hypertension (PAH) in this murine model (SU5416 + hypoxia) is associated with early changes in right ventricular (RV) diastolic and systolic function. RV and lung injury in the SU5416 + hypoxia model are associated with markers for fibrosis, inflammation, and oxidative stress. Sulforaphane (SFN) alone for 4 wk has no effect on the murine heart or lungs. Sulforaphane (SFN) attenuates or prevents the RV and lung injury in the SUF5416 + hypoxia model of PAH, suggesting that Nrf2 may be a candidate target for strategies to prevent or reverse PAH.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Marc A. Simon ◽  
Michael R. Pinsky

Right ventricular (RV) dysfunction is the main cause of death in pulmonary arterial hypertension (PAH). Our understanding of the pathophysiology of RV dysfunction is limited but improving. Methods to better diagnose RV dysfunction earlier and treatments specifically designed to minimize or reverse the remodeling process are likely to improve outcomes. We review the current understanding of RV dysfunction in chronic pressure overload and introduce some novel insights based on recent investigations into pathophysiology, diagnosis, and treatment.


Sign in / Sign up

Export Citation Format

Share Document