scholarly journals Downregulation of Neuronal Nitric Oxide Synthase and Interleukin-1β Mediates Angiotensin II-Dependent Stimulation of Sympathetic Nerve Activity

Hypertension ◽  
2002 ◽  
Vol 39 (2) ◽  
pp. 519-524 ◽  
Author(s):  
Vito M. Campese ◽  
Shaohua Ye ◽  
Huiquin Zhong
2021 ◽  
pp. 169-175
Author(s):  
S Liskova

The sympathetic nerve activity (SNA) is augmented in hypertension. SNA is regulated by neuronal nitric oxide synthase (nNOS) or endothelial nitric oxide synthase (eNOS) activity in hypothalamic paraventricular nuclei (PVN) and/or brainstem rostral ventrolateral medulla. High nNOS or eNOS activity within these brain regions lowers the SNA, whereas low cerebral nNOS and/or eNOS activity causes SNA augmentation. We hypothesize that the decreased cerebral nNOS/eNOS activity, which allows the enhancement of SNA, leads to the augmentation of renal eNOS/nNOS activity. Similarly, when the cerebral nNOS/eNOS activity is increased and SNA is suppressed, the renal eNOS/nNOS activity is suppressed as well. The activation of endothelial α2-adrenoceptors, may be a possible mechanism involved in the proposed regulation. Another possible mechanism might be based on nitric oxide, which acts as a neurotransmitter that tonically activates afferent renal nerves, leading to a decreased nNOS activity in PVN. Furthermore, the importance of the renal nNOS/eNOS activity during renal denervation is discussed. In conclusion, the presented hypothesis describes the dual organ-specific role of eNOS/nNOS activity in blood pressure regulation and suggests possible connection between cerebral NOS and renal NOS via activation or inhibition of SNA, which is an innovative idea in the concept of pathophysiology of hypertension.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Arjun Vivek Pendharkar ◽  
Daniel L Smerin ◽  
Lorenzo Gonzales ◽  
Eric Wang ◽  
Sabrina L Levy ◽  
...  

Abstract INTRODUCTION Poststroke optogenetic stimulation has been shown to enhance neurovascular coupling and functional recovery. Neuronal nitric oxide synthase (nNOS) has been implicated as a key regulator of neurovascular response in acute stroke but its role in subacute recovery remains unclear. Here we investigate nNOS expression in stroke mice undergoing optogenetic stimulation of the contralesional lateral cerebellar nucleus (cLCN). We also examine the effects of nNOS inhibition on functional recovery using a pharmacological inhibitor targeting nNOS. METHODS Transgenic Thy1-ChR2-YFP male mice (10-12 wk) were used. Stereotaxic surgery was performed to implant a fiber cannula in the cLCN and animals underwent intraluminal middle cerebral artery suture occlusion (30 min). Optogenetic stimulation began at poststroke (PD) day 5 and continued until PD14. Sensorimotor tests were used to assess behavioral recovery at PD4, 7, 10, and 14. At PD15, primary motor cortex from both ipsi- and contralesional motor cortex (iM1, cM1) were dissected. nNOS mRNA and protein levels were examined using quantitative polymerase chain reaction and western blot. In another set of studies, nNOS inhibitor ARL 17477 dihydrochloride (10 mg/kg, intraperitoneally) was administered daily between PD5-14 and functional recovery was evaluated using sensorimotor tests. RESULTS cLCN stimulated stroke mice demonstrated significant improvement in speed (cm/s) on the rotating beam task at PD10 and 14 day (P < .05, P < .001 respectively). nNOS mRNA and protein expression was significantly and selectively decreased in cM1 of cLCN stimulated mice (P < .05). The reduced nNOS expression in cM1 was negatively correlated with improved recovery (R2 = −0.839, Pearson P = .009). nNOS inhibitor-treated stroke mice exhibited a significant functional improvement in speed at PD10, when compared to stroke mice receiving vehicle (saline) (P < .05). CONCLUSION Our results suggest that nNOS may play a maladaptive role in poststroke recovery. Optogenetic stimulation of cLCN and systemic nNOS inhibition produce functional benefits after stroke.


2000 ◽  
Vol 348 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Ernst R. WERNER ◽  
Hans-Jörg HABISCH ◽  
Antonius C. F. GORREN ◽  
Kurt SCHMIDT ◽  
Laura CANEVARI ◽  
...  

Tetrahydrobiopterin [(6R)-5,6,7,8-tetrahydro-L-biopterin, H4biopterin] is one of several cofactors of nitric oxide synthases (EC 1.14.13.39). Here we compared the action of N5-substituted derivatives on recombinant rat neuronal nitric oxide synthase with their effects on dihydropteridine reductase (EC 1.6.99.7) and phenylalanine hydroxylase (EC 1.14.16.1), the well-studied classical H4biopterin-dependent reactions. H4biopterin substituted at N5 with methyl, hydroxymethyl, formyl and acetyl groups were used. Substitution at N5 occurs at a position critical to the redox cycle of the cofactor in phenylalanine hydroxylase/dihydropteridine reductase. We also included N2ʹ-methyl H4biopterin, a derivative substituted at a position not directly involved in redox cycling, as a control. As compared with N5-methyl H4biopterin, N5-formyl H4biopterin bound with twice the capacity but stimulated nitric oxide synthase to a lesser extent. Depending on the substituent used, N5-substituted derivatives were redox-active: N5-methyl- and N5-hydroxylmethyl H4biopterin, but not N5-formyl- and N5-acetyl H4biopterin, reduced 2,6-dichlorophenol indophenol. N5-Substituted H4biopterin derivatives were not oxidized to products serving as substrates for dihydropteridine reductase and, depending on the substituent, were competitive inhibitors of phenylalanine hydroxylase: N5-methyl- and N5-hydroxymethyl H4biopterin inhibited phenylalanine hydroxylase, whereas N5-formyl- and N5-acetyl H4biopterin had no effect. Our data demonstrate differences in the mechanism of stimulation of phenylalanine hydroxylase and nitric oxide synthase by H4biopterin. They are compatible with a novel, non-classical, redox-active contribution of H4biopterin to the catalysis of the nitric oxide synthase reaction.


Sign in / Sign up

Export Citation Format

Share Document