Abstract 528: Dose- And Salt-dependency Of Angiogenesis Inhibition-induced Blood Pressure Rise And Renal Toxicity

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Stephanie Lankhorst ◽  
Mariëtte H Kappers ◽  
Stefan Sleijfer ◽  
A H Danser ◽  
Anton H van den Meiracker

Angiogenesis inhibition with the VEGF inhibitor sunitinib is an established anti-cancer therapy, inducing hypertension and nephrotoxicity. We explored the dose- and salt-dependency of these side effects. In male WKY rats, mean arterial pressure (MAP) was monitored telemetrically during oral treatment with a high (27.5 mg/kg.day, n=14), an intermediate (14 mg/kg.day, n=6) and low dose (7 mg/kg.day, n=6) of sunitinib or vehicle (n=8) after normal salt diet for 2 weeks. The low dose-model was also combined with a high salt diet (8% NaCl and saline water). Eight days after administration rats were sacrificed and blood and 24h urine samples collected for biochemical measurements. With the high dose of sunitinib, MAP increased from 94.7±0.9 mmHg to 125.8±1.5 mmHg (Δ31.1±0.9 mmHg, p<0.001). The intermediate and low doses induced MAP rises of 24.3±2.7 mmHg (p<0.001) and 13.4±3.3 mmHg (p<0.001), respectively. The low dose of sunitinib with high salt, induced a MAP rise of 43.5±2.2 mmHg (p<0.001 compared to normal salt). With the high dose, circulating ET-1 increased from 0.6±0.1 pg/ml to 1.6±0.2 pg/ml (p<0.01) and serum cystatine-C from 4.5±0.1 mg/L to 6.6±0.3 mg/L (p<0.001). Comparable increases in circulating ET-1 were seen with the intermediate and low doses, whereas serum cystatine-C did increase with the intermediate dose (to 6.3±0.1 mg/L, p0.05). Serum cystatine-C levels with low and high salt were identical. With the high dose of sunitinib, proteinuria increased from 7.5±1.3 to 33.3±4.8 mg/day (p<0.05). The rise in proteinuria was attenuated with the intermediate (16.2±2.1 mg/day, p<0.01) and low dose (19.9±3.3 mg/day, p<0.01), but increased to 40.4±30.1 mg/day (p>0.05) with high salt. Angiogenesis inhibition-induced hypertension and nephrotoxicity are dose-dependent with a lower threshold for the rise in BP than for renal toxicity. The BP rise observed with the low dose of sunitinib observed in normotensive rats is comparable to the sunitinib-induced BP rise observed in patients and clearly is salt-sensitive. Since cystatine-C levels during normal and high salt diet were comparable, the BP rise during high salt seems independent of renal dysfunction.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Eric J Belin de Chantemele

Recent studies by our group demonstrated that leptin is a direct regulator of aldosterone secretion and increases blood pressure via sex-specific mechanisms involving leptin-mediated activation of the aldosterone-mineralocorticoid receptor signaling pathway in females and sympatho-activation in males. Although it is well accepted that females secrete more leptin and aldosterone than males, it is unknown whether leptin infusion raises blood pressure similarly in male and female mice and whether higher aldosterone levels sensitize females to salt-induced hypertension. We hypothesized that female mice would be more sensitive to leptin than males and also have a potentiated blood pressure rise in response to high salt diet compared to males. Male and female Balb/C mice were implanted with radiotelemeters for continuous measurement of mean arterial pressure (MAP) at 10 weeks of age. MAP was measured for seven days prior to feeding with a high-salt diet (HS, 4%NaCl) for seven days. Following a recovery period, animals were then implanted with osmotic minipumps containing leptin (0.9mg/kg/day) recorded for seven days. Baseline MAP was similar between males and females (101.3±2.9 vs 99.3±3.7 mmHg, n=4 and 5, respectively), however, HS diet resulted in a greater MAP increase in females (15.0±2.6 mmHg) compared to males (3.1±4.5 mmHg, P<0.05). MAP with leptin treatment was increased with leptin in females moreso than in males, however, this did not reach significance (6.8±5.8 vs 1.8±5.9 mmHg, respectively). This potential sex difference in blood pressure responses to leptin was not associated with changes in body weight (0.07±0.44 vs -0.22±0.2 g, respectively) nor changes in blood glucose (-19.67±15.06 vs -15.4±11.4 mg/dl, respectively) in males and females in response to leptin. In summary, female mice are more sensitive to HS diet-induced blood pressure increases than males. Females may be more sensitive to leptin-mediated blood pressure increases than males. Further investigation is needed to determine whether these sex differences in blood pressure responses to HS diet and leptin are mediated by aldosterone or other mechanisms.


2006 ◽  
Vol 290 (3) ◽  
pp. H935-H940 ◽  
Author(s):  
Dexter L. Lee ◽  
Lashon C. Sturgis ◽  
Hicham Labazi ◽  
James B. Osborne ◽  
Cassandra Fleming ◽  
...  

Plasma levels of IL-6 correlate with high blood pressure under many circumstances, and ANG II has been shown to stimulate IL-6 production from various cell types. This study tested the role of IL-6 in mediating the hypertension caused by high-dose ANG II and a high-salt diet. Male C57BL6 and IL-6 knockout (IL-6 KO) mice were implanted with biotelemetry devices and placed in metabolic cages to measure mean arterial pressure (MAP), heart rate (HR), sodium balance, and urinary albumin excretion. Baseline MAP during the control period averaged 114 ± 1 and 109 ± 1 mmHg for wild-type (WT) and IL-6 KO mice, respectively, and did not change significantly when the mice were placed on a high-salt diet (HS; 4% NaCl). ANG II (90 ng/min sc) caused a rapid increase in MAP in both groups, to 141 ± 9 and 141 ± 4 in WT and KO mice, respectively, on day 2. MAP plateaued at this level in KO mice (134 ± 2 mmHg on day 14 of ANG II) but began to increase further in WT mice by day 4, reaching an average of 160 ± 4 mmHg from days 10 to 14 of ANG II. Urinary albumin excretion on day 4 of ANG II was not different between groups (9.18 ± 4.34 and 8.53 ± 2.85 μg/2 days for WT and KO mice). By day 14, albumin excretion was nearly fourfold greater in WT mice, but MAP dropped rapidly back to control levels in both groups when the ANG II was stopped after 14 days. Thus the ∼30 mmHg greater ANG II hypertension in the WT mice suggests that IL-6 contributes significantly to ANG II-salt hypertension. In addition, the early separation in MAP, the albumin excretion data, and the rapid, post-ANG II recovery of MAP suggest an IL-6-dependent mechanism that is independent of renal injury.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Anita Matic ◽  
Ivana Jukic ◽  
Zrinka Mihaljevic ◽  
Nikolina Kolobaric ◽  
Ana Stupin ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 463-P
Author(s):  
TOMONORI KIMURA ◽  
YOSHITAKA HASHIMOTO ◽  
TAKAFUMI SENMARU ◽  
EMI USHIGOME ◽  
MASAHIDE HAMAGUCHI ◽  
...  
Keyword(s):  

2019 ◽  
Vol 20 (14) ◽  
pp. 3495 ◽  
Author(s):  
Yanling Yan ◽  
Jiayan Wang ◽  
Muhammad A. Chaudhry ◽  
Ying Nie ◽  
Shuyan Sun ◽  
...  

We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.


Hypertension ◽  
2005 ◽  
Vol 45 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Magdalena Gonzalez ◽  
Lorena Lobos ◽  
Felipe Castillo ◽  
Lorna Galleguillos ◽  
Nandy C. Lopez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document